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Abstract

English

This thesis focuses on geometric flows of curves in three-dimensional Euclidean space, a sub-
ject often overshadowed by the study of higher-dimensional or intrinsic flows. The work
presents analytical and topological advancements, particularly in higher codimension curve
shortening flow as well as in the introducedminimal surface generating flow and framed cur-
vature flow. Utilizing tools from nondegenerate homotopy and geometric knot theory, the
study augments the available methods for understanding the long-term behavior of evolving
space curves. These developments have the potential to be applied in various fields, including
fluid dynamics, material science, and computer graphics.

Czech

Tato práce se zaměřuje na geometrické toky křivek ve třírozměrném eukleidovském prostoru,
téma, které je často zastíněno studiem vyšších dimenzí nebo intrinzických toků. Práce před-
stavuje analytické a topologické pokroky, zejména ve zkracování křivek vyšší kodimenze, ste-
jně jako v představeném toku generujícím minimální plochy. S využitím nástrojů z nedegen-
erovanéhomotopie a geometrické teorie uzlůpráce rozšiřuje dostupnémetodypropochopení
dlouhodobého chování vyvíjejících se prostorových křivek. Tyto výsledky mohou nalézt up-
latnění v různých oblastech, včetně dynamiky tekutin, materiálové vědy a počítačové grafiky.
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State of the Art

The study of geometric flows has been an area of rigorous academic inquiry for decades, lead-
ing to groundbreaking results like the proof of the Poincaré conjecture. Nonetheless, the
majority of this body of work has primarily focused on intrinsic flows, flows in abstract am-
bient spaces, and higher-dimensional flows of hypersurfaces. While these topics are undoubt-
edly important, they often leave out the specific challenges and peculiarities of evolving space
curves in three-dimensional Euclidean space.

Although the evolution of curves in higher dimensional spaces has seen specialized applica-
tions, among others in fluid dynamics through the binormal flow or in computer graphics
for modeling elastic rods, the short and long-term behavior of space curves subjected to geo-
metric flows are areas that are not yet fully understood, leaving room for new discoveries.

Goals

The primary aim of this work is to delve into the properties and behaviors of evolving space
curves, specifically in three-dimensional Euclidean space. This research looks to fill existing
gaps in the literature by addressing challenges tied to the topology and knotted configurations
of these curves. Additionally, the work aims to develop new analytical and topological tools
tailored to these questions.

Methods

The topic of geometric flows requires knowledge of analytical tools in partial differential
equations, geometricmeasure theory and differential geometry. Furthermore, The challenges
related to the definition of Frenet frame demand the use of topological tools from homotopy
theory and geometric knot theory. Finally, computational simulations aided by discrete dif-
ferential geometry and numerical analysis provide empirical support for theoretical findings.

Results

The work offers novel insights into the long-term properties of curve shortening flows in
space curves, and presents analysis of new geometric motion laws and their trajectory sur-
faces. Another contribution is the introduction of a new invariant quantity called the tangent
turning signature and the use of nondegenerate homotopy theory for geometric flows.

Ramifications

The findings of this work are anticipated to have ramifications not just in the mathematical
understanding of geometric flows but also in applications that extend to data denoising, vi-
sualization, and robotics. By deepening the comprehension of how space curves evolve over
time, this research stands to offer new avenues for both theoretical and applied sciences.
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0
Introduction

This work presents a collection of the author’s results related to geometric flows of curves in
space. These flows are pivotal for understanding and modelling significant natural phenom-
ena, such as turbulence or the dynamics of dislocation lines. Furthermore, they offer valuable
applications in areas like data denoising, visualization, and robotics.

The study of geometric flows is an active research domain with a rich history and important
results including the proof of the Poincaré conjecture. Yet, recent research trends havemainly
focused on intrinsic flows, flows in abstract ambient spaces, or the higher-dimensional flows
of hypersurfaces. The evolution of space curves in three-dimensional Euclidean space is often
relegated to specialized contexts, such as fluiddynamics in thebinormal flowcase or computer
graphics for evolving elastic rods.

This leaves many fundamental questions related to the short and long-term behaviour unan-
swered. Moreover, evolving space curves present challenges posed by the topology of their
framing and the potential for knotted configurations. This work aims to address these chal-
lenges and provide new analytical and topological tools for answering them.

0.0 Overview

The thesis consolidates and presents key findings drawn from the following research articles:

[MKB19] J. Minarčík, M. Kimura, and M. Beneš. “Comparing motion of curves and hy-
persurfaces in Rm”. In: Discrete and Continuous Dynamical Systems Series B 24
(2019), pp. 4815–4826.

[MB20] J.Minarčík andM. Beneš. “Long-term behavior of curve shortening flow inR3”.
In: SIAM Journal onMathematical Analysis 52 (2020), pp. 1221–1231.

5



[MB22a] J. Minarčík and M. Beneš. “Minimal surface generating flow for space curves of
non vanishing torsion”. In: Discrete and Continuous Dynamical Systems - Series
B 27 (2022), pp. 6605–6617.

[MB22b] J. Minarčík and M. Beneš. “Nondegenerate Homotopy and Geometric Flows”.
In: Homology, Homotopy and Applications 24 (2022), pp. 255–264.

[MB23] J. Minarčík and M. Beneš. “Trajectory Surfaces of Framed Curvature Flow”.
Preprint 2023.

It is divided into one introductory chapter with an overview of related work, 5 chapters with
new results from the articles above, and an appendix with computational experiments. The
contents of each chapter are outlined in the following list.

Ch. 0. Introduction. This chapter introduces the broader topic of geometric flowswith an
emphasis on space curve evolution. An extensive list of applications and approaches
for modelling geometric flows is provided along with an overview of related work.

Ch. 1. Higher Codimension Curve Shortening Flow. Collections of results from arti-
cles [MKB19] and [MB20] related to the long-term properties of the curves short-
ening flow of space curves. Contains the generalized comparison principle, its con-
sequences and results related to evolution of specific families of space curves.

Ch. 2. Minimal Surface Generating Flow. In this geometric flow of space curves, intro-
duced in [MB22a], the curve traces out zero mean curvature surface. This chapter
covers the properties of general trajectory surfaces, derivation of the minimal sur-
face generating flow and all results from [MB22a], including the terminal time and
generated area estimates, analytical example and integral of motion.

Ch. 3. Nondegenerate Homotopy. Formulating geometric flows of space curves using
quantities derived from the Frenet frame restricts themotion to one connected com-
ponent of the space of locally convex curves. This chapter addresses this problem by
using a new invariant quantity called tangent turning sign, proposed in [MB22b].

Ch. 4. Framed Curvature Flow. This chapter introduces the framed curvature flow from
[MB23]. It is a generalization of both the curve shortening flow and the vortex fil-
ament equation. After establishing local existence and global estimates, we analyze
the trajectory surfaces generated by different variations of this flow, specifically those
leading to surfaces of constant mean or Gaussian curvature.

Ch. A. Appendix: Evolution of Filament Networks. This chapter covers evolving fil-
ament networks that optimize energy leading to branching structures with triple
junctions. We derive and study the discrete gradient flow for this energy and the
branching condition it induces.

Ch. B. Appendix: Computational Experiments. The second part of the Appendix con-
tains a collection of selected results fromcomputational experiments related to prob-
lems studied in Chapters 1 to 4 and Appendix A.

Apart from introductory sections, the thesis contains only results from author’s own work.
All restated results from the literature are clearly marked with the appropriate reference.

6



(a) Material dislocation lines.
Ex. 9. Image from [KR12].

(b) Knotted vortex filament.
Ex. 4. Image from [KI13].

(c) Solar magnetic field lines.
Ex. 5. Image from [MA19].

Figure 1: Examples of important natural phenomena at three drastically different scales in-
volving one dimensional filaments that can be modeled as geometric flows of space curves.

0.1 Motivation

Although this work does not address a specific application, it is good to have in mind the
possible use-cases of the theory at hand. This section covers a range of possible applications
of geometric flows in science, engineering and various domains of mathematics.

0.1.0 Applications in Science

A surprising number of natural and artificial phenomena around us can be described using
a one-dimensional filament in three-dimensional Euclidean space moving according to laws
formulated as partial differential equationswhichdependon the state of the environment and
the shape of the filament itself. The simplification of complex three-dimensional dynamical
systems to a moving space curve enables faster and more scalable numerical simulations and
often uncovers new insights and intuitive explanations.

Example List 0.1.1 (Applications in science). Overview of models based on evolving curves or
hypersurfaces that are useful for understanding phenomena in physics, biology and chemistry.

Ex. 1. Cell membranes. The Canham-Helfrich model explains the shape of biological
cells by minimizing the energy functional given by

CHpΣtq “

ż

Σt

αHpH ´H0q ´ αKK dA,

whereαH ,αK andH0 are fixed constants andH ,K are themean andGauss curva-
ture of the surfaceΣt, respectively. This leads to a modified version of theWillmore
flow and its limiting shapes can among others explain the distinctive shape of red
blood cells [BLS20].

Ex. 2. Dynamics of DNA and Proteins: At the microscopic scale, DNA and proteins ex-
hibit shapes and dynamics that can be represented as evolving curves inR3. Inmany
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applications, DNA is modeled as an evolving ribbon, especially when simulating ef-
fects such as supercoiling [RCV93]. Techniques like the Kirchhoff-Love rod model
can be employed for this purpose [ÐGM13]. Another critical aspect is the inter-
action of topoisomerase with DNA, which is essential for untangling the molecule
during meiosis [Sum86].

Ex. 3. Phase singularites. Scroll waves in excitable media are spiral-shaped waves that oc-
cur in chemical reactions, like the Belousov–Zhabotinsky reaction, or biological sys-
tems such as the cardiac tissuewhere the electrical pulses aremodeled using reaction-
diffusion equations like the FitzHugh-Nagumo equation. When modeled in three-
dimensional space, the phase singularities lie along a space curve that evolves based
on geometrical properties such as the twist of the curve [MS16; MS19; Kee88].

Ex. 4. Magnetic field lines. The dynamics of solar flares and other astrophysical phenom-
ena can be studied using evolving curves representing magnetic field lines. These
modelsmay lead to a better understanding of high-energy events and their impact on
Earth [YHW10] and they can also be used for solar corona visualizations [Pad+22].

Ex. 5. Vortex filaments. Vortices represent concentrated regions of vorticity in fluid dy-
namics. Their motion can be modeled by the binormal flow, also known as the vor-
tex filament equation [Veg15], which is the localized induction approximation of
the Biot-Savart equation [Ric91]. Vortex filaments in superfluids or Bose-Einstein
condensates can be modeled by curvature-driven flow similar to the vortex filament
equation [Bar+97]. Unlike the classical vortices that can quickly dissipate, the sta-
bility of quantum vortices allows interesting reconnection dynamics [ZR22].

Ex. 6. Hele-Shaw problem. Hele-Shaw flows occur when a viscous fluid is squeezed be-
tween two parallel plates [Saf86; Hel98]. By treating the fluid boundary as an evolv-
ing curve, one can study the fingering pattern formation mechanism [SSY22].

Ex. 7. Crystal growth. The process of solidification of materials with crystalline struc-
ture can be described as a moving boundary problem in an anisotropic environment
[Gur93]. The mathematical formulation of this problem leads to Finsler geometry.

Ex. 8. Grain boundaries. The evolution of grain boundaries in grain boundaries of poly-
crystalline materials affects their mechanical properties and can be modeled as hy-
persurfaces moving according to the mean curvature flow [Mul56].

Ex. 9. Dislocationdynamics. Dislocations in crystals, seen as defects along a curve [Mur87],
can be modeled as curvature-driven flow with an external forcing term that can ac-
count for interactions with other dislocation loops or other defects [Kol+18].

Ex. 10. River meandering. Rivers are dynamic geological structures that can significantly
change their shape in timescales of single years. The simplest mathematical model
describes the river bed centerline as a planar curve evolving with normal velocity

vN “ σ ‹ κ, σpsq “ m1δpsq `m2Hpsqe´αs,

wherem1,m2 andα are constants,H is the Heaviside function, δ is the Dirac delta
and ‹ denotes convolution. Themodel takes into account the upstream curvature of
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(a) Knotted DNAmolecule.
Ex. 2. Image from [al85].

(b) Meandering river bed.
Ex. 10. Image from [Ima14].

(c) B.–Z. reaction scroll waves.
Ex. 3. Image from [WHB09].

Figure 2: Besides physics, modelling of one-dimensional filaments is useful in many domains
of science. This figure illustrates examples from biology, geology and chemistry.

the curve to approximate the rate of experienced erosion. This model was suggested
in [Fur91] and later studied in e.g. [Fur88; OA08; Par+11; FL13].

Ex. 11. Wearing process. One of the first applications of the mean curvature flow was the
description of the natural wearing process of stones and othermaterials that are sub-
jected to various forms of natural wear such as erosion [Fir74].

0.1.1 Applications in Engineering

As three-dimensional digital design advances, both in complexity and prevalence, the rele-
vance of geometric flows in engineering becomes more important. These principles have
applications ranging from image processing and architectural design to computer graphics
and robotics. By understanding the dynamics of curves and surfaces, engineers have a more
rigorous approach to address various challenges in their respective domains.

Example List 0.1.2 (Applications in engineering). Overview of models based on geometric
flows that can be used for solving problems in computer science, civil engineering, robotics, etc.

Ex. 15. Image processing. Although modern image processing techniques usually involve
convolutional neural networks or similar architectures, the contour capture via a
modified curve shortening flow has been successfully used for segmentation inmed-
ical, geological, and other domains [BCM04; Ben+08; Cao03; PM87].

Ex. 16. Architecture. In architecture, the design of complex structural forms like bridges,
towers, and buildings often involves the movement and optimization of curves in
space. Examples of such processes can be found in [Rem+14].

Ex. 17. Computer graphics. In computer graphics,modelingobjects like ropes, hair, clothes,
or smoke involves moving curves or elastic rods in a virtual three-dimensional space.
Another technique calledSchrödinger’s smoke [Che+16]uses binormal flowtomodel
vorticity lines for efficient smoke and dust animations in games and CGI effects.
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Ex. 18. Diagram layout.Mathematical visualization software likeKnotPlot [Sch22] orPen-
rose [Ye+20] performs automatic layout of geometric primitives like curves by a pro-
cess that usually involves gradient flows of some curve functional.

Ex. 19. Network analysis. Generalized notions of geometric flows have been used in the
context of graph learning and network analysis. Recent examples include commu-
nity detection methods using the Ricci flow [Ni+19] or various uses of the Ollivier-
Ricci curvature [CDR22] defined even for hypergraphs.

Ex. 20. Robotics. In robotics, for example in the design of multi-jointed manipulators,
optimal curves represent the trajectories in the constrained configuration space of
the robot. Another interesting example involves the optimisation of medical robot
trajectory during colonoscopy [MU14]. Another related example is the optimal
origami folding studied in [DO07; FT99].

Ex. 21. Fire front propagation. The progression of wildfire fronts can be effectively de-
scribed as a moving curve whose dynamics depend on the terrain, vegetation, and
wind [MKF09]. This helps in forecasting the spread of fires and designing effective
firefighting strategies. A related problem with a different solution is the modelling
of the smoldering front via the Kuramoto-Sivashinsky model [Kol+21].

Ex. 22. Data denoising. In computer graphics and geometry processing, the mean curva-
ture flow can be used for smoothing surfaces, denoising point clouds, or morph-
ing between shapes. Applying the mean curvature flow on point clouds and mesh
structures helps in removing noise and imperfections, thus producing smoother and
cleaner data representations [Ale+03].

0.1.2 Applications inMathematics

Besides the applications in science and engineering, various geometric flows have proven to
be remarkably useful tools in theoretical fields ranging from geometrical measure theory to
differential topology, enabling the proofs of many long-standing problems. We believe that
this area is still ripe for new results, particularly in the case of higher codimension motion,
which typically receives less attention. For example, open problems from [Gho19] may be
within reach, provided that further analysis of framed curvature flow is pursued.

Example List 0.1.3 (Applications in mathematics). Methods based on geometric flows that
have led to important proofs or provided novel insights in various fields of pure mathematics.

Ex. 23. Penrose inequality. The Penrose inequality, a result in the field of general relativity,
gives a lower bound for the total mass of a spacetime, given the area of the event
horizon of its black holes [HI01]. The proof of this inequality was made possible
using the inversemean curvature flow, demonstrating the profound interconnection
between geometric analysis and the physics of black holes.

Ex. 24. Poincaré conjecture. Richard Hamilton’s work on Ricci flow and later Grigori
Perelman’s work on the Ricci flow with surgeries [Per02; Per03b] played a central
role in the proof of the long-standing Poincaré conjectures in dimension 4.
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(a) Surface under Ricci flow.
Ex. 30. Image from [Sla07].

(b) Sphere eversion model.
Ex. 26. Image from [Sul02].

(c) Rendering of knotted tube.
Ex. 27. Image from [Sch22].

Figure 3: Rendering of objects obtained by running various geometric flows.

Ex. 25. Geometrization conjecture. TheGeometrization conjecture, proposed byWilliam
Thurston and later proved byGrigori Perelman [Per02; Per03b], provides a compre-
hensive picture of the possible shapes of three-dimensional spaces. The use of Ricci
flow was key to its proof which demonstrates the utility of geometric flows as tools
for addressing problems in topology.

Ex. 26. Sphere eversion. Sphere eversion is a regular homotopy through immersions of
2-sphere in R3 from f : S2 Ñ R3 to ´f . In another words, this process turns
the initial sphere inside out [Sma58]. There are many proofs and visualizations of
this counterintuitive result. Perhaps themost elegant and visually appealing has been
achieved by applying theWillmore flow to half-waymodels such as the Boy’s surface.

Ex. 27. Knot energies. The evolution of knot embeddings towards the critical points of
O’Hara type energies [OHa91] has shown to be a crucial tool in modern knot the-
ory research [Abr+01]. Aiding intuition and adding beautiful visualisations to this
topological subject [Sch22].

Ex. 28. Minimal surface theory: Minimal surfaces, which are surfaces with zeromean cur-
vature at every point, have been a topic of significant interest due to their beautiful
geometric properties and numerous applications in both pure and applied mathe-
matics. Oneof the primary tools to study and constructminimal surfaces is themean
curvature flow. As minimal surfaces are critical points of this flow, one can use e.g.
the Brakke Surface Evolver [Bra92] to investigate and visualizeminimal surfaceswith
prescribed boundary conditions.

Ex. 29. Willmore conjecture: TheWillmoreflowcanbeused tofind surface immersions of
minimal bending energy. A famous example is the Clifford torus, which is defined
as the product of two circles with different radii in R4 and then projected to R3.
ThomasWillmore conjectured in 1965 that this shape withWillmore energy of 2π2

is optimal among all surfaces of genus one. This conjecture remainedopen for several
decades until it was proved by Fernando Coda Marques and André Neves in 2012.
Their proof uses min-max theory and the theory of minimal surfaces to confirm the
long-standing conjecture [MN14].
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Ex. 30. Ricci flow: After the excitement about Ricci flow, generated by Perelman’s proof,
more recent work on Ricci flow led to results such as the Generalized Smale conjec-
ture [BK22] and the Differentiable Sphere Theorem [BS09].

0.2 Geometric Flows

Let us give a brief overview of geometric flows. In simple terms, they are partial differential
equations that dictate the time evolution of a manifold given by its properties. One may
classify them into two general groups; intrinsic and extrinsic; based onwhether the governing
motion lawdepends on extrinsic properties, i.e. requires themanifold tobe immersed in some
ambient space. We first describe these two groups in more detail and with specific examples,
and then turn to the special case of geometric flows of curves.

0.2.0 Intrinsic Flows

In the context of intrinsic geometric flows,we consider a family ofmanifolds pM, gq equipped
with a time-dependentRiemannianmetric g. The evolution equation of themetric g usually
depends on the some notion of curvature.

Definition 0.2.1 (Intrinsic geometric flow). An intrinsic geometric flow is a one-parameter
family of Riemannian metrics gptq on a smooth manifoldM, such that the metric evolves in
time according to a given geometric property, like the curvature tensors of the manifold.

The governing equations for intrinsic flows typically involve the Riemannian curvature ten-
sorRm, its trace called Ricci curvatureRic “ trRm, or the scalar curvatureR “ trRic.

Example List 0.2.2 (Intrinsic geometric flows). Specific examples from Definition 0.2.1:

Ex. 31. Ricci flow. The most widely studied intrinsic flow has the form

Btg “ ´2Ricpgq,

where Ric is the Ricci curvature tensor, see e.g. [Top06] for general introduction.
Ricci flowwas introducedbyRichardHamilton [Ham82] andusedbyGrigori Perel-
man to prove the Geometrization conjecture and thus the Poincare conjecture in di-
mension 4 [Per03a]. Although not exactly, it is similar to the heat equation and can
be formulated as a gradient flow [Per02]. Even though it can encounter singularities,
its existence can be extended by surgeries [Per03b].

Ex. 32. Yamabe flow. This flow deforms the Riemannian metric tensor g and tends to a
metric of constant scalar curvatureR, see [Ye94; Bre05]. It is a gradient flow of the
Yamabe functional, which is proportional to the total scalar curvature overM.

Ex. 33. Calabi flow. There have been other intrinsic flows, that can be applied to specific
types of manifolds with more structure. Notable example is the Calabi flow defined
on Kähler manifolds.

As the notion of intrinsic flow is not useful for curves, the rest of this work deals only with
extrinsic motion laws. We explore the basic notions in the next section.
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M

F (·, t)

(N , g)

(Mt, g)

Figure 4: Depiction of objects used in the definition of general extrinsic flows.

0.2.1 Extrinsic Flows

In most scientific applications, we typically study manifolds immersed in specific ambient
spaces, such as the EuclideanR3, theMinkowski spacetime, or the de Sitter space depending
on the specific physical context. To this end, we fix the base manifold M of dimensionm
and consider a time-dependent family of immersions (see Figure 4)

F : M ˆ r0, tq Ñ pN , gq,

where pN , gq is the ambient Riemannian manifold of dimension nwith metric g.

The immersion F induces a new metric g on M. In local coordinates of M with basis
txiuiďm, the metric g is given by the expression

gij “
@

BxiF, BxjF
D

.

To further simplify the matter for this overview, let us assume that the immersion is a hy-
persurface of codimension one, i.e. n is one less thanm. For a general treatment of higher
codimension flow, see the survey [Smo12].

In the codimension one case, we will consider flows in the form

BtF pp, tq “ V pp, tqνpp, tq (1)

for p P M and t P r0, tq, where ν is the outward normal vector and the specific expression
for the normal velocity V shall be specified in the examples later.

Definition 0.2.3 (Extrinsic flows). Extrinsic flows describe the evolution of a manifold M
immersed in an ambient space pN , gq according to the equation in the form (1), where the nor-
mal velocity V depends on geometric properties defined with respect to the ambient space. They
often involve the extrinsic curvatures like the mean or Gauss curvature.

Example List 0.2.4 (Extrinsic flows). Specific examples from Definition 0.2.3:

Ex. 34. Mean curvature flow. The simplest and most studied flow written as

V “ ´H,

whereH is the mean curvature of the hypersurface. See e.g. [Hui84].
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(a) Graph representation.

M

Φ > 0

Φ < 0

(b) Level set method.

F

S
n

M

(c) Parametric approach.

Figure 5: Types of representations from Example List 0.3.1.

Ex. 35. Inverse mean curvature flow. This flow expands, given by

V “ H´1,

rather than contracts the initial hypersurface. It led to a new proof for the Rieman-
nian Penrose inequality [HI01] for black holes.

Ex. 36. Willmore flow. Gradient flow of the Willmore energy, can be written in the form

V “ 2∆gH `H3 ´ 4HK,

where∆g is the Laplace-Bertrami operator with respect to the induced metric g,H
andK are the mean and Gauss curvatures, respectively. See e.g. [Obe07].

More examples are given in the next section which is focused on one-dimensional objects.

0.3 Curve Flows

This thesis studies the extrinsic flow of curves. This section gives an an overview of this field,
covers different approaches, provides specific examples, and introduces the notation.

0.3.0 Representation Approaches

Representing geometric objects, like curves and surfaces, can be accomplished through vari-
ous mathematical formulations. This section explores commonly used representation meth-
ods and discusses their advantages, limitations, and applications.

Example List 0.3.1 (Representations). Representation approaches and their advantages:

I. Parametric approach. Perhaps the most straightforward representation is one where
the base manifold is parametrized by n free variables and the mapping F is given by

F pp, tq “ F̃ pu#1 ppq, . . . , u#n ppq, tq.
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Note that throughout this work, this function F̃ will usually be denoted by γ. Its
advantage lies in simplicity and simple discretization for computational purposes, but
it cannot handle topological changes, like merging or splitting [Bän+23].

II. Graph representation. Somehypersurfaces canbe represented as a collectionofpoints

px1, . . . , xn´1,Ψpx1, . . . , xn´1qq P Rn,

where x1, . . . , xn´1 are first n ´ 1 coordinates in some bases ofRn andΨ is a func-
tional defined on a domain Ω Ă Rn´1. This approach is quite limited as the func-
tional Ψ must be injective, but after appropriate coordinate transformation, it can
sometimes be used for local analysis [DS23].

III. Level set representation. The level set method makes use of an auxiliary functional
Φ defined on the ambient space pN , gq. The manifold pMt, gq can then be retrieved
as the zero level set ofΦ, i.e.

Mt “ Φ´1
t p0q “ tx P N : Φpx, tq “ 0u,

where Φt “ Φp¨, tq. This approach handles all topological changes automatically
but is numerically more expensive to model asΦmust be defined on potentially large
dimensional spaces [Set96; OS88]. It is not easily extensible to the higher codimension
case, but this generalisation is possible [Bur+01; AS96].

IV. Phase field method. This method is based on the idea of using a smooth function to
approximate the characteristic function of the manifold, allowing smooth transitions
betweenphases. It is particularly useful for simulating complex interfacial phenomena.
As it is also an implicit model, it shares most of the advantages and disadvantages with
the level set method. For details, see e.g. [CH58; Cag86; Ben01; Gar+23].

0.3.1 ParametricMethod

Throughout most of this thesis, we use the parametric approach, for its mathematical sim-
plicity and simple numerical implementation. We also aim to take advantage of the fact that,
unlike other approaches, it easily generalizes to higher codimension flows.

In this section, we define the necessary notation for the parametric space curves in motion
and recall the governing equations for a general geometric flow of curves inR3.

Let tΓtutPr0,tq denote a family of closed curves inR3 evolving in time interval r0, tq, where
t ą 0 is the terminal time. For given t P r0, tq, the curve Γt is represented by a parametriza-
tion γp¨, tq : S1 Ñ R3, where S1 “ R{2πZ is the unit circle.

We use the standard notation for the Frenet frame, i.e. T ,N , andB denotes the tangent, nor-
mal, and binormal vector, respectively. The curvature and the torsion, given by the Frenet-
Serret formulae, are denoted by κ and τ , respectively. Finally,

g :“ }Buγ}

is the local rate of parametrization and ds “ g du is the arclength element.
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Definition 0.3.2 (Geometric flow of curves). The time evolution of tΓtutPr0,tq is given by the
geometric flow in the form of the following initial-value problem for γ “ γpu, tq:

Btγ “ vTT ` vNN ` vBB in S1 ˆ p0, tq, (2)
γ|t“0 “ γ0 in S1, (3)

where γ0 is the parametrization for the initial curveΓ0. Since the motion in the direction of the
tangent vector T does not affect the shape of the curve, we often assume that vT “ 0.

0.3.2 Examples

This subsection provides an extensive overview of geometric flows of curves, both in plane
andhigh-dimensional spaces. It should serve as a useful guide and reference for future readers.

Example List 0.3.3 (Geometric flows of space curves). Examples from Definition 0.3.2:

Ex. 37. Curve shortening flow. Themost famous curve flow and the one that is the easiest
to study due to its connection to the heat equation is

Btγ “ B2
sγ “ κN.

It has been extensively studied inR2 [GH86; Gra87], and its generalization to higher
codimensions is discussed in Chapter 0.4 which also contains further references.

Ex. 38. Vortex filament equation. The binormal flow is defined as

Btγ “ Bsγ ˆ B2
sγ “ κB

is in many senses orthogonal to the curve shortening flow. It preserves the local rate
of parametrisation g and thus the length has a surprising connection to a nonlin-
ear Schrödinger equation through the so-called Hashimoto transform [Has72] and
it arises in fluid dynamics as a model for vortex dynamics via a linear induction ap-
proximation of the Biot-Savart equation [Ric91].

Ex. 39. Elastic flow. Similarly to the Willmore energy, the elastic energy is the integral of
curvature squared over the curve Γt. The gradient flow of this energy has the form

Btγ “ p2κτ2 ´ κ3 ´ 2B2
sκqN ´ p4Bsκτ ` 2κBsτqB.

Or the equation Btγ “ ´κ3N ´ 2B2
sκN for planar curves. This flow leads to

elasticae curves which were studied from the time of Euler [Eul44; LS84].

Ex. 40. Minimal surface generating flow. The curve moving according to

Btγ “ τ´ 1
2N

traces out a zero mean curvature surface. This motion law has been introduced in
[MB22a] and is the subject of Chapter 2.
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Ex. 41. Framed curvature flow. Another flow related to trajectory surfaces is

Btγ “ κνθ “ κ cos θ N ` κ sin θ B,

where θ is a function defined along the curve and depends on time. This flow is
introduced in Chapter 4 of this thesis.

Ex. 42. Writhe minimising flow. The following flow of space curves

Btγ “ ´BspBsγ ˆ B2
sγq “ κτN ´ BsκB

maximizes the total torsion, or equivalently due to theCălugăreanu theorem, itmin-
imizes the property called writhe of embedded curves.

Ex. 43. Second-order elastic flow. Another interesting gradient flow is

Btγ “ p2B4
sκ´ κpBsκq2 ` 2κ2B2

sκ´ 2τ2B2
sκqN ` 2pBsτB2

sκ` 2τB3
sκqB

or again its planar version Btγ “ p2B4
sκ´ κpBsκq2 ` 2κ2B2

sκqN . In this case, the
minimized functional is the integral of pBsκq2 over Γt.

Ex. 44. Knot energy minimisation. In [OHa91; OHa92], Jun O’Hara studied knot ener-
gies that define optimal embeddings of knotted curves [KS97; Abr+01]. The sim-
plest example is the Möbius energy defined as

MpΓtq “

ĳ

S1ˆS1

„

1

}γpu, tq ´ γpv, tq}2
´

1

Dpγpu, tq, γpv, tqq2

ȷ

dudv,

where Dpγpu, tq, γpv, tqq is the shortest arc distance along the curve Γt between
the two points γpu, tq and γpv, tq. Analysis of gradient flows for these energies was
conducted in e.g. [Bla18; RS21].

Ex. 45. Repulsive Flows. Similarly to the O’Hara-type energies, repulsive flows studied in
[Yu+21; YSC21] lead to optimal embeddings of curves or surfaces given their topol-
ogy. These flows minimize the tangent point energy given by

TP pΓtq “

ĳ

S1ˆS1

gpu, tqgpv, tq

ρpu, v, tq
dudv,

where ρpu, v, tq is the radius of the smallest sphere tangent to the curve at γpu, tq
and passing through the point γpv, tq.

Remark 0.3.4. This list is not comprehensive, butmany other flows studied for specific scientific
or engineering applications are derived from the listed motion laws by the addition of external
forcing term or can bewritten as a linear combination of the above laws. For example, in the con-
text of quantum vortices in Bose-Einstein condensate, dictated by the Gross-Pitaevskii equation,
the linear induction approximation of the flow has form

Btγ “ aBsγ ˆ B2
sγ ´ bBsγ ˆ pBsγ ˆ B2

sγq “ aκB ` bκN,

where a and b are physical constants. See [ZR22; Bar+97; Fey55].
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Figure 6: Frenet vectors of curve Γt at the point γpu, tq.

We also include a short list of alternative but related problem statements.

Example List 0.3.5 (Adjacent curve flow problems). This list complements Example List
0.3.3 with additional problems that involve the motion of curves but do not fit Definition 0.3.2:

Ex. 46. Network flow. The study of network flow extends the geometric flow of individual
curves to a system of interconnected curves or networks. This typically introduces
additional complexity, such as the behavior at junctions. One interesting application
is in the study of Steiner trees, which aim to connect a set of points with the shortest
possible total length. Analysis of network flows has been carried out in [NPP20;
NPP19; BW95; Man+18]. The topic is also discussed in Chapter A of this thesis.

Ex. 47. Anisotropicmotion. Anisotropicmotion involves geometric flowswhere the speed
ofmotiondepends not only on curvature but also on the directionof thenormal vec-
tor. This dependence on direction introduces a Finsler metric into the problem and
can lead to the evolution of curves towards certain shapes, known as Wulff shapes,
that are determined by the anisotropy [BP96].

Ex. 48. Exotic ambient spaces. Another interesting direction is the study of extrinsic flows
in non-standard ambient spaces, where even simple flows can lead to unexpected be-
haviour. For example, onemight consider curve shortening flow in the context ofLa-
grangian mean curvature flow [ELW22], where curves move in a high-dimensional
symplectic manifold.

Ex. 49. Interacting curves. Interacting curves consider the behavior ofmultiple curves that
influence each other’s motion. This interaction can lead to complex dynamics and
patterns, such as those studied in [BKŠ22].

0.4 Technical Preliminaries

This purely technical section states useful apparatus utilized across this thesis. It may serve as
a useful glossary of evolution equations for curve flows as it coversmost of the basic equations
for general velocities vN and vB . It however ignores the tangential term vT for simplicity. For
alternative equations including non-trivial tangential velocity see e.g. [BKŠ22].
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0.4.0 Local Quantities

In the rest of this chapter, we implicitly assume that tΓtutPr0,tq is a family of space curves
evolving according to a general geometric flow given by velocities vN and vB .

Lemma 0.4.1 (Arc-Length commutator). The arc-length commutator during the general ge-
ometric flow of curves given by

rBt, Bss :“ BtBs ´ BsBt “ κvNBs. (4)

Equivalently, the local rate of parametrisation evolves as Btg “ ´κvNg.

Proof. The statement is a special case of Proposition 1 from [BKŠ22].

Remark 0.4.2. Note that some authors express the evolution equations in terms of the normal
component of the arc-length derivative∇s defined as

∇sϕ “ Bsϕ´ xBsϕ, T yT

for vector functions ϕ : S1 Ñ R3. We will avoid this notation and only use Bs.

Proposition 0.4.3 (Local quantities). The evolution equations for the local geometric quanti-
ties during the motion given by (2-3) can be retrieved from the general algebraic framework for
invariant submanifold flows devised in [Olv08]. According to Example 5.7 from [Olv08], the
equations for vT “ 0 read

Btg “ ´gvNκ, (5)
Btκ “ B2

svN ` κ2vN ´ 2τBsvB ´ vBBsτ ´ vNτ
2, (6)

Btτ “ 2vNκτ ` κBsvB ` Bsr 1κ pvNBsτ ` 2τBsvN ` B2
svB ´ vBτ

2qs, (7)

Proposition 0.4.4 (Frenet frame evolution). The time evolution of the Frenet frame reads

Bt

»

–

T
N
B

fi

fl “

»

–

0 BsvN ´ vBτ vNτ ` BsvB
´BsvN ` vBτ 0 ϕ
´vNτ ´ BsvB ´ϕ 0

fi

fl ¨

»

–

T
N
B

fi

fl , (8)

where the last entries are ϕ “ 1
κ pvNBsτ ` 2τBsvN ` B2

svB ´ vBτ
2q.

0.4.1 Global Quantities

We also include a brief overview of important evolution equations for global geometric quan-
tities. Since the arc-length parametrisation is time-dependent (see Lemma 4.1.1), the path in-
tegral does not, in general, commute with the time derivative. Instead, it behaves in the way
described in the following lemma.

Lemma 0.4.5. For any differentiable map ϕ : S1 ˆ r0, tq Ñ Rd with d P N we have

d

dt

ż

Γt

ϕ ds “

ż

Γt

Btϕ´ κvNϕ ds.
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Proof. Using ds “ g duwe transform the integral into one that commute with Bt as

d

dt

ż

Γt

ϕds “
d

dt

ż

S1

ϕg du “

ż

S1

Btϕg ` ϕBtg du “

ż

Γt

Btϕ` ϕ
Btg

g
ds.

The statement is then obtained by applying the commutator lemma.

Based on this lemma, we now state the evolution equation for global quantities of interest.

Proposition 0.4.6 (Evolution of Global Geometric Quantities). Let tΓtutPr0,tq be a family
of curves evolving according to the general geometric flow with velocities vN and vB . Then

d

dt
LpΓtq “ ´

ż

Γt

κvN ds,

d

dt

ż

Γt

κds “ ´

ż

Γt

τBsvB ` τ2vN ds,

d

dt

ż

Γt

τ ds “

ż

Γt

κτvN ` κBsvB ds,

whereLpΓtq denotes the length of the evolving curve Γt.

Proof. All formulas follow from Lemma 0.4.5 and use the fact that the curve is closed.

In later chapters, these equations will lead to important statements about the long-term be-
haviour of specific geometric flows, like the estimates for the maximal time of existence, clas-
sification of singularities, or changes in topological properties like self-linking.
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1
High-Codimension Curve Shortening Flow

This Chapter presents results from articles [MKB19] and [MB20] that focus on the long-
term behaviour of curve shortening flow in higher dimensional ambient spaces. The theo-
retical efforts to understand the properties of the original curve shortening problem in R2

have led to several important results obtained by Hamilton, Gage, and Grayson in [GH86;
Gra87]. The well-known Grayson-Gage-Hamilton Theorem states that the curve shorten-
ing flow shrinks all simple planar curves to a point, making them asymptotically circular as
they approach the singularity and keeping them simple throughout the timespan of the evo-
lution [Whi02]. The motion also preserves the convexity of the curve and makes initially
non-convex curves convex in finite time.

Many of these classical results have been generalized for the mean curvature flow of hyper-
surfaces [Hui84], but they do not hold for the codimension-two problem discussed here. In
R3, the curve shortening flow curvesmay lead to local singularities before the length vanishes
even for embedded curves, and, in general, neither embeddedness nor generalized convexity
is preserved in this case.

This problemwas first studied byAltschuler andGrayson in [Alt91; AG92], where the short-
term existence and uniqueness of the solution were shown. The article [Alt91] also classified
all types of singularities thatmay develop during themotion. Recently, properties of this flow
were studied in [MKB19; Kha15; Cor16;He12;MKB19; Lit23] and solitons of the flowwere
discussed in [Alt+13].

In this chapter, we describe the relationship between moving curves and hypersurfaces via a
generalized comparisonprinciple. Convexity of curves and their two-dimensional projections
during the flow is discussed in the second part and the third part deals with spherical curves.
First, we show that they obey theAvoidance principle and then discuss the behavior of several
spherical curves evolving at once.
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1.0 Known Properties

Let us restate the definition and classical results of curve shortening flow for convenience.

Definition 1.0.1 (Curve shortening flow). Let tΓtutPr0,tq with t ą 0 be a family of evolving
curves. The curve shortening flow is defined as the following initial-value problem:

Btγ “ κN on S1 ˆ r0, tq, (1.1)
γ|t“0 “ γ0 in S1, (1.2)

where γ0 P C2pS1;R3q is the parametrization of the initial curve Γ0.

Remark 1.0.2. AlthoughN is undefined for all points onΓt whereκ “ 0, the right-hand side
term κN “ B2

sγ in (1.1) remains defined everywhere.

Let us first state the existence results for curve shortening flow in higher dimensional space
that are due to Altshuler.

Theorem 1.0.3 (Short-term existence, Theorem 1.3 in [AG92]). Let Γ0 be a closed space
curve. Then for some ε ą 0, there exists a solutionΓt to the curve shortening flow (1.1-1.2) with
the initial condition Γ0 on S1 ˆ r0, εq.

The long term existence is also available for curve shortening in higher dimensional spaces.

Theorem 1.0.4 (Long-term existence, Theorem 1.13 in [AG92]). Let tΓtutPr0,tq be a solu-
tion to the curve shortening flow (1.1-1.2), where t ą 0. If κ is bounded on S1 ˆ r0, tq, then
there exists an extension of this solution to S1 ˆ r0, t` ϵq for some ϵ ą 0.

Remark 1.0.5. For local regularity theory consult [Bra78] and [Whi05].

The fundamental result for curve shortening flow is the Gage-Hamilton-Grayson theorem.

Theorem1.0.6 (Gage-Hamilton-Grayson theorem[GH86;Gra87]). Suppose thattΓtutPr0,tq

is a family of smooth, embedded, and closed curves inR2, evolving according to the curve short-
ening flow (1.1-1.2). Then the following properties hold:

1. The length of the curveLpΓtq is a non-increasing function of t.

2. The isoperimetric ratio is a non-decreasing function of t.

Moreover, under the curve shortening flow, any initial simple closed curve remains embedded
for all t P r0, tq, becomes round as t approaches t, and vanishes in a round point as t tends to t.

This theorem however does not generalize to higher codimension. Examples and further dis-
cussion of different corner cases will be given throughout this chapter.

There are several tools to analyze long term behaviour and singularities of the curve shorten-
ing flow. For example, the entropy formula recently used in [Lit23] to study singularities:

EpΓtq :“ sup
x0PR3,t0ą0

ż

Γt

ϕx0,t0pγps, tq, tqds.
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Figure 1.1: Examples of Abresch-Langer shrinkers. Images adapted form [Hal12].

Here ϕx0,t0 is the one-dimensional backwards heat kernel centered at px0, t0q:

ϕx0,t0px, tq “ p4πt0q´ 1
2 e´

}x´x0}2
4t0

Due toHuisken’smonotonicity result, this entropy ismonotone non-increasing under curve
shortening flow. The monotonicity formula from [Hui90] states that

d

dt

ż

Γt

ϕx0,t0 ds “ ´

ż

Γt

ˇ

ˇ

ˇ

ˇ

κ`
xγ,N, y

2pt0 ´ tq

ˇ

ˇ

ˇ

ˇ

2

ϕx0,t0 ds.

Another classical result of Huisken is his comparison principle from [Hui98], which uses

Rptq :“ sup
u‰v

LpΓtq

πdipu, v, tq
sin

„

πdepu, v, tq

LpΓtq

ȷ

,

where depu, v, tq “ }γpu, tq ´ γpv, tq} is the extrinsic and di is the intrinsic distance along
the curve. The theorem states that for embedded curves, the value ofRptq is non-increasing.
This result can also be used for simpler proof [AB11] of Theorem 1.0.6.

1.0.0 Examples of Solutions

Finding analytical solutions of solutions with given properties gives intuition about the be-
haviour of a particular problemandprovides ideas of feasible theoretical results. In particular,
for the curve shortening flow, people studied solutions forming solitons, self-similar solutions
[Hal12] or ancient solutions [DHS10] which can be defined in time domain p´8, tq. This
subsection provides a quick overview of all the known examples.

Example List 1.0.7. Examples of solutions to the curve shortening flow.

Ex. 51. Stationary line. All straight lines are fixed points due to zero curvature. Lines also
represent a limiting shape for the ancient sine curve solution.

Ex. 52. Shrinking circle. The simplest non-trivial example is that of shrinking circles Γt “

BBρptq. Because of the radial symmetry leading to constant curvature, this example
leads to an ordinary differential equation for the radius ρwhich reads

ρ1ptq “ ´ρ´1ptq, ρp0q “ ρ0,
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Figure 1.2: Examples of Yin Yang spirals. Images adapted form [Hal12].

where ρ0 ą 0 is the initial radius. This equation can be solved analytically as

ρptq “ pρ20 ´ 2tq
1
2 ,

which is defined on p´8, tq with the terminal time t “ 1
2ρ

2
0.

Ex. 53. Helix curve. Similarly to the shrinking circles example, the helix curve evolution
reduces to the following first-order nonlinear ODE for the radius

ρ1ptq ` pρ2ptq ` ξ2q´1ρptq “ 0,

where ξ is a fixed constant from the helix curve paramatrization

γpu, tq “ pρptq cosu, ρptq sinu, ξuqT .

Unlike the circle, this solution approaches the straight line in t “ 8.

Ex. 54. Grim reaper. Another ancient analytical solution is the translating graph

γpu, tq “ pu, F pu, tqqT , F pu, tq “ ´ log cosu` t

for u P p´π
2 ,

π
2 q. This example in fact exists for all t in p´8,8q.

Ex. 55. Paperclip. Other known analytical examples are given implicitly. The following
compact solution, sometimes referred to as the paperclip [Hal12], is given by

Γt “
␣

px, yqT P p´π
2 ,

π
2 q ˆ R : coshx “ e´t cos y

(

.

This solution is defined for t P p´8, 0q and can be understood as two connected
Grim reaper curves that shrink towards a point at t “ 0.

Ex. 56. Ancient sine curve. Another implicitly defined solution similar to the paperclip is
the ancient sine curve or hairclip solution [Hal12] defined as

Γt “
␣

px, yqT P R2 : sinhx “ e´t cos y
(

.

In this case, the solution exists for t P R and is for all times non-compact. It asymp-
totically approaches a straight line as time approaches infinity.
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Ex. 57. Yin Yang spiral. Besides the shrinking solitons, there are also many rotating exam-
ples or examples that rotate and expand or shrink at the same time [Hal12].

Ex. 58. Abresch-Langer shrinkers. This family of planar solutions from [AL86] represent
the self-similar limiting shapes for curves with turning numbers larger than 1.

For a comprehensive overviewwithmore examples of solutions inR3 see [Alt+13]. For other
recent developments see [DHS10; Hal12; AY18; Zha+22].

1.0.1 Evolution of Geometric Quantities

This subsection gives an overview of known evolution equations for the curve shortening
flow. These technical preliminaries are necessary for most of the results in this chapter.

Lemma 1.0.8. The evolution equations for the local geometric quantities:

Btg “ ´gκ2, (1.3)
Btκ “ B2

sκ` κ3 ´ κτ2, (1.4)

Btτ “ 2κ2τ ` B2
sτ ` Bs

`

2τ Bsκ
κ

˘

. (1.5)

Lemma 1.0.9. The time evolution of the Frenet frame is given by

Bt

»

–

T
N
B

fi

fl “

»

–

0 Bsκ κτ
´Bsκ 0 ϕ
´κτ ´ϕ 0

fi

fl ¨

»

–

T
N
B

fi

fl , (1.6)

where bottom right entries are ϕ “ Bsτ ` 2τ Bsκ
κ .

Lemma 1.0.10. The time evolution of important global quantities is

d

dt
LpΓtq “ ´

ż

Γt

κ2 ds,

d

dt

ż

Γt

κds “ ´

ż

Γt

κτ2 ds,

d

dt

ż

Γt

τ ds “

ż

Γt

κ2τ ds.

The global evolution equations can be used to assess long-term behaviour of the flow.

Proposition 1.0.11. The length of the curve under the curve shortening flow can be bounded
as

LpΓtq ď pL2pΓ0q ´ 8π2tq´ 1
2 (1.7)

Proof. Using Proposition 1.0.10 and the Cauchy-Schwarz inequality yields

d

dt
LpΓtq “ ´

ż

Γt

κ2 ds ď ´
1

LpΓtq

„
ż

Γt

κds

ȷ2

ď ´
4π

LpΓtq
, (1.8)

where the last inequality is due to the Fenchel theorem.
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Note that if Γt is knotted for all t P r0, tq then the estimate (1.7) can be improved to

LpΓtq ď pL2pΓ0q ´ 16π2tq´ 1
2 .

When Γt is knotted, one may use the Milnor-Fáry theorem instead of the Fenchel theorem
and obtain ´8π instead of ´4π the right hand side of inequality (1.8).

Corollary 1.0.12. The maximal time of existence can be bounded as

t ď
1

8π2
L2pΓ0q.

The right hand side can be halved when Γt remains knotted.

Remark 1.0.13. In the case of planar curves, one can also consider the evolution of the enclosed
areaApΓtq given by the following, surprisingly simple, formula

ApΓtq “
1

2

ż

Γt

xγ,Ny ds.

Using the Green’s Theorem one can show that

d

dt
ApΓtq “ ´

ż

Γt

κds.

For embedded closed curves, the right-hand side is´2π. Thus the areaApΓtq “ ApΓ0q ´2πt
and vanishes at t “ 1

2πApΓ0q. Furthermore, the isoperimetric ratio satisfies

d

dt

„

LpΓtq
2

ApΓtq

ȷ

“ ´2
LpΓtq

ApΓtq

„
ż

Γt

κ2 ds´ π
LpΓtq

ApΓtq

ȷ

.

Using this formula and the Bonneson inequality one can show that for an initially convex curve,
the isoperimetric ratio approaches4π as tapproaches t. The isoperimetric inequality implies that
the curve must approach a round circle in the limit.

Further maximal time estimates can be achieved by analyzing the curvature.

1.0.2 Curvature estimates

This subsection uses the Weak maximum and minimum principle for scalars from [Top06]
to estimate the evolution of curvature. We begin by restating the classical theorem.

Proposition 1.0.14 (Theorem 3.1.1 from [Top06]). Let t P r0, ts with t ă 8. LetXptq be
any smooth real function of time, F : S1 ˆ r0, ts Ñ R. Suppose u : S1 ˆ r0, ts Ñ R solves

Btu ď B2
su`XBsu` F pu, tq.

Furthermore, let α P R and consider ϕ : r0, ts Ñ R such that ϕp0q “ α and
dϕ
dt “ F pϕptq, tq

for all t P r0, ts. If up¨, 0q ď α, then up¨, tq ď ϕptq for all t P r0, ts.
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Remark 1.0.15. Proposition 1.0.14 also holds if we replace all ď with ě. This alternative
alternative result is called the weak minimal principle, see Corollary 3.1.2 in [Top06].

To point out the differences between the curvature shortening flow in R2 and R3, we first
state the curvature estimates for the case of planar curves.

Proposition 1.0.16. Let tΓtutPr0,tq with the terminal time t ą 0 be a family of planar curves
evolving according to the curve shortening flow. Furthermore, let us define

αm :“ min
uPS1

κpu, 0q, αM :“ max
uPS1

κpu, 0q. (1.9)

Then for all t P r0, ts and all u P S1 we can bound the curvature from both sides as

αmp1 ´ 2α2
mtq

´ 1
2 ď κpu, tq ď αM p1 ´ 2α2

M tq
´ 1

2 . (1.10)

Proof. For planar curves, the evolution equation for curvature reduces to

Btκ “ B2
sκ` κ3.

In this case, we may setXptq ” 0 and F pu, tq “ u3, which leads to

ϕptq :“ αp1 ´ 2α2tq´ 1
2 ,

with α being αm or αM . The inequality chain (1.10) is then obtained by application of the
minimal and maximal principle from Proposition 1.0.14 and Remark 1.0.15.

The lower estimate of curvature indicates that it must blow up at a finite time. Moreover, the
following statement shows how this blow-up time can be upper bounded.

Corollary 1.0.17. The terminal time t of the planar curve shortening flow can be bounded as

t ď p2αmq´1,

where αm is the minimum curvature of the initial curve from (1.9).

Proof. The statement follows from the left inequality in (1.10).

Another, important ramificationof inequality (1.9) is the preservation of convexity for planar
curves under the curve shortening flow.

Corollary 1.0.18. Let Γt be a planar curve evolving according to curve shortening flow with a
convex initial condition, i.e. the signed curvature κpu, 0q ě 0 for all u P S1. Then

κpu, tq ě 0

for all u P S1 and t P r0, tq. Thus, the convexity of the initial curve is preserved.

Proof. The statement follows from the left inequality from (1.10). Initially, non-negative
curvature will only increase in time.
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Remark 1.0.19. Another important inequality involving the curvature is theHamilton-Harnack
inequality from [Ham95]. Their theorem states that assuming Γt is convex then

Btκ

κ
´

pBsκq2

κ2
`

1

2t
ď 0.

This result is useful for uniqueness proofs for translating solitons [Ham95].

The application of the maximum principle to the three-dimensional case is not as powerful.

Proposition 1.0.20. Let tΓtutPr0,tq with the terminal time t ą 0 be a family of space curves
evolving according to the curve shortening flow. Furthermore, let us define

αM :“ max
S1

κp¨, 0q.

Then for all t P r0, ts and all u P S1 we can upper bound the curvature as

κ ď αM p1 ´ 2α2
M tq

´ 1
2 .

Proof. As the additional term ´κτ2 in (todo) is always non-positive, we may upper bound
expression for the curvature derivative Btκ to get the following inequality

Btκ “ B2
sκ` κ3 ´ κτ2 ď B2

sκ` κ3,

which allows us to use Proposition 1.0.14 as in the proof of Proposition 1.0.16.

Remark 1.0.21. For estimates of curvature derivatives see e.g. Theorem 1.25 in [Has16].

As we have not established the curvature lower bound as in Proposition 1.0.16. This result
does not lead to a straightforward estimate of terminal time. To achieve this, we explore new
version of the comparison principle in the next Section.

1.1 Generalized Comparison Principle

As suggested in the previous sections, the long term behaviour of the curve shortening flow
in higher codimension is not as straightforward as the planar case. Also, some of the tooling
used for planar analysis do not generalize to space curves. One such tool is the avoidance or
comparison principle, see Theorem 1.0.6. As the notion of inside and outside loses meaning
for curves in space, the classical formulation of this result is not applicable.

This section describes results from [MKB19], which expand the comparison principle to
higher codimension by bounding the space curve by moving hypersurface. This leads to al-
ternative proof for some of the known results for spherical curves but also allows us to obtain
newknowledge about the long termbehavior, amongothers byobtaining anewupper bound
for the maximal time of existence.
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Ξt

Γt

γ(u, t)

y(u, t) γ(u(t), t)

y(u(t), t)

Figure 1.3: Diagram depicting ypu, tq and ūptq.

1.1.0 MovingHypersurfaces

For the purposes of this section, we introduce the notion ofmoving hypersurface in the nota-
tion fromChapter 5 of [Kim08]. Consider a family of closed oriented C2-class hypersurfaces
inm-dimensional Euclidean spaceRm, denoted by tΞtutPr0,tΞq with tΞ ą 0.

Since Ξt is oriented and closed manifold at each time t, there are two disjoint open sets Ω˘
t

such thatΩ`
t Y Ω´

t “ RmzΞt. The sign convention ofΩ˘
t determines the direction of the

unit normal vector denoted by ν. For every time t P r0, tΞq and point y P Ξt, we set νpy, tq
to point outward ofΩ`

t .

Let∇Ξt
denote the surface gradient on Ξt andW denote the Weingarten map given by

W py, tq “ ´p∇Ξt
ν1, . . . ,∇Ξt

νmqpy, tq.

We further define the principal curvatures κ1, . . . , κm´1 which are the eigenvalues of the
Weingarten mapW with xei, νy “ 0, i.e. Wei “ κiei for i “ 1, . . . ,m ´ 1 andWν “

0. Note that te1, . . . , em´1, νu becomes an orthonormal basis of Rm (see Chapter 2 in
[Kim08] for further details).

Remark 1.1.1. By changing the orientation ofΞt, i.e. swappingΩ`
t andΩ´

t , we not only affect
the direction of the normal vector ν but also the sign of the principal curvaturesκ1, . . . , κm. For
example, if we consider Ξt “ BB and Ω´

t “ B, where B P Rm is a unit ball, the normal
vector ν is pointing towards the center ofB and all principal curvature are equal to 1.

Following the notation in Chapter 5 from [Kim08], we say that tΞtutPr0,tq is a C2,1-class if
ν P C1pM;Rmq, where we formally defineM as the set

M :“
ď

tPr0,tq

Ξt ˆ ttu Ă Rm ˆ R.

Finally, the time evolution of tΞtutPr0,tΞq is given by its normal velocity functional

V px, tq “
@

z1ptq, νpx, tq
D

,

where z is a differentiable function of time t with initial condition zp0q “ x and such that
zpt1q P Ξt1 for all t1 from some neighborhood of t.
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1.1.1 Signed Distance Function

We analyse the relationship between the evolving curve Γt and the moving hypersurface Ξt

by means of the signed-distance function ϕ. For point x P Rm and time t, we define ϕ as

ϕpx, tq :“

$

’

&

’

%

distpx,Ξtq for x P Ω`
t

0 for x P Ξt

´distpx,Ξtq for x P Ω´
t

.

For readers’ convenience, we introduce the following notation depicted in Figure 1.3:

ypu, tq “ argmin
zPΞt

}γpu, tq ´ z}, (1.11)

ūptq “ argmin
uPS1

}γpu, tq ´ ypu, tq}. (1.12)

With the help of this notation, we recall the properties of signed distance functions and sum-
marize them in the following lemma. For more details, see Chapter 3 in [Kim08].

Lemma 1.1.2. WhenΞt is sufficiently smooth, there exists ε0 ą 0 such that when

distpγpu, tq,Ξtq ă ε0

for some parameter u P S1 and time t P r0, tq, then the helper function ypu, tq is unique and
the derivatives of the signed distance function ϕ can be expressed as

∇ϕpγpu, tq, tq “ ´νpypu, tq, tq, (1.13)

∆sϕpγpu, tq, tq “

m´1
ÿ

i“1

κipypu, tq, tq

1 ` ϕpγpu, tq, tqκipypu, tq, tq
, (1.14)

Hϕpγpu, tq, tq “ pI ` ϕpγpu, tqqW pypu, tq, tqq´1W pypu, tq, tq, (1.15)
Btϕpγpu, tq, tq “ vpypu, tq, tq. (1.16)

whereHϕ is the Hessian of ϕ and I is them bym identity matrix.

Proof. Proofs of all formulas as well as other details concerning signed distance functions of
hypersurfaces can be retrieved from Chapter 3 of [Kim08].

1.1.2 Comparison Theorem

Before stating the generalized comparison theorem, we define an auxiliary function ρ, de-
scribing the minimal distance between the curve Γt and the hypersurfaceΞt, as

ρptq :“ min
uPS1

distpγpu, tq,Ξtq. (1.17)

In simpler terms, this function can be rewritten as

ρptq “ distpγpūptq, tq,Ξtq “ }γpūptq, tq ´ ypūptq, tq}.

We can now state the main result of this Section.
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Proposition 1.1.3 (Main theorem from [MKB19]). Let tΓtutPr0,tΓq with tΓ ą 0 be a
family of space curves moving according to the curve shortening flow equation (1.1-1.2) and
let tΞtutPr0,tΞq with tΞ ą 0 be a C2,1-class moving hypersurface with V satisfying

V py, tq ě max
1ďiăm

κipy, tq (1.18)

for all t P r0, tΞq and all y P Ξt. Assume that the initial curve Γ0 lies inside Ω`
0 and the

parametrisation γ0 is from C2pS1;Rmq. Furthermore assume that there is ε0 ą 0 such that,
for all u P S1 and t P r0, tΞq for which

0 ă distpγpu, tq,Ξtq ă ε0

there exist ypu, tq and ūptq and equations (1.13-1.16) are satisfied. Finally, assume that both
the normal velocity V of Ξt and the curvatureK of Γt are uniformly bounded. Then

ρptq ě mintε0, ρp0qu. (1.19)

for all t between 0 andminttΓ, tΞu.

Proof. Let us abbreviate γ̄ptq :“ γpūptq, tq and ȳptq :“ ypūptq, tq and for ε ą 0 denote

Iε :“ tt P r0,minttΓ, tΞuq : distpγ̄ptq,Ξtq ă εu.

Lemma 1.1.2 implies the existence of ε0 ą 0 such that the formulae (1.13-1.16) hold on the
subset Iε0 . As ϕpγp¨, tq, tq attains its minimum at ūptq and is C2-class, its first derivative is

0 “ d
du rϕpγpu, tq, tqs |u“ūptq “ x∇ϕpγ̄ptq, tq, Buγpūptq, tqy (1.20)

and the second derivative satisfies the following inequality

0 ď d2

du2 rϕpγpu, tq, tqs |u“ūptq “ d
du x∇ϕpγpu, tq, tq, Buγpu, tqy |u“ūptq

“ xHϕpγ̄ptq, tqBuγpūptq, tq, Buγpūptq, tqy `
@

∇ϕpγ̄ptq, tq, B2
uγpūptq, tq

D

, (1.21)

where Buγpu, tq “ }Buγpu, tq}T pu, tq and

B2
uγpu, tq “ }Buγpu, tq}´1Bu}Buγpu, tq}Buγpu, tq ` }Buγpu, tq}2Kpu, tqNpu, tq.

From (1.13) and (1.20), it follows that xT pūptq, tq, νpyptq, tqy “ 0. Moreover,
@

∇ϕpγ̄ptq, tq, B2
uγpūptq, tq

D

“ ´}Buγpūptq, tq}2 xνpȳptq, tq, pKNqpūptq, tqy . (1.22)

Combining the above formulate (1.22) to (1.21) yields

xHϕpγ̄ptq, tqT pūptq, tq, T pūptq, tqy ě xνpȳptq, tq, pKNqpūptq, tqy . (1.23)

In the following, we show that ρ from (1.17) is Lipschitz continuous in Iε0 . From the defi-
nition of the closest point parameter ūptq, we obtain the following inequality

ρpt2q ´ ρpt1q “ ϕpγpūpt2q, t2q, t2q ´ ϕpγpūpt1q, t1q, t1q

ď ϕpγpūpt1q, t2q, t2q ´ ϕpγpūpt1q, t1q, t1q.
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The derivative d
dtϕpγpu, tq, tq can be upper bounded as

ˇ

ˇ

d
dtϕpγpu, tq, tq

ˇ

ˇ “ | x∇ϕpγpu, tq, tq, Btγpu, tqy ` Btϕpγpu, tq, tq|

ď | x∇ϕpγpu, tq, tq,Kpu, tqNpu, tqy | ` |vpypu, tq, tq|.

Furthermore, the properties of ϕpγpu, tq, tq imply an existence of a positive constantC ą 0
such that for a fixed parameter value u P S1 and for all times t from the interval Iε0 we get

ˇ

ˇ

d
dtϕpγpu, tq, tq

ˇ

ˇ ď sup
tPr0,minttΓ,tΞuq

”

max
uPS1

|Kpu, tq| ` max
yPΞt

|vpy, tq|

ı

“: C,

which implies that |ρpt2q´ρpt1q| ď C|t2 ´ t1|. We now use the Rademacher theorem (see
e.q. [EG92]), which ensures the existence of a subsetN Ă Iε0 with zero one-dimensional
Lebesgue measure µpN q “ 0 such that for all t P Iε0zN “: Ĩε0 we can write

ρ1ptq “ lim
hÑ0`

ρpt` hq ´ ρptq

h
“ lim

hÑ0`

ρptq ´ ρpt´ hq

h
ď C.

For time t from the new interval Ĩε0 and for small value h ą 0we get

ρpt` hq ´ ρptq ď ϕpγpūptq, t` hq, t` hq ´ ϕpγpūptq, tq, tq, (1.24)
ρptq ´ ρpt´ hq ě ϕpγpūptq, tq, tq ´ ϕpγpūptq, t´ hq, t´ hq. (1.25)

In the limit as h approaches 0 from above, the above inequalities (1.25) and (1.24) lead to

ρ1ptq ď d
dtϕpγpu, tq, tq|u“ūptq, (1.26)

ρ1ptq ě d
dtϕpγpu, tq, tq|u“ūptq. (1.27)

Thus we arrive at a formula for ρ1ptq that can be further rewritten as

ρ1ptq “ d
dtϕpγpu, tq, tq|u“ūptq

“ x∇ϕpγ̄ptq, tq, Btγpūptq, tqy ` Btϕpγ̄ptq, tq

“ ´ xνpȳptq, tq, pKNqpūptq, tqy ` vpȳptq, tq.

Using (1.23) and the assumption (1.18), we can lower bound ψ1ptq by

ρ1ptq ě max
1ďiăm

κipȳptq, tq ´ xHϕpγ̄ptq, tqT pūptq, tq, T pūptq, tqy . (1.28)

The second term in (1.28) can be rewritten as the following sum

xHϕpγ̄ptq, tqT pūptq, tq, T pūptq, tqy “

B

W pȳptq, tqT pūptq, tq

I ` ϕpγ̄ptq, tqW pȳptq, tq
, T pūptq, tq

F

“

m´1
ÿ

i“1

κipȳptq, tqxT pūptq, tq, eipȳptq, tqy2

1 ` ϕpγ̄ptq, tqκipȳptq, tq
,

where part of the summand can be upper bounded from non-negativity of ϕpγ̄ptq, tq as

κipȳptq, tq

1 ` ϕpγ̄ptq, tqκipȳptq, tq
ď κipȳptq, tq ď max

1ďjăm
κjpȳptq, tq.
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Γ0

x0r0

∂B(x0, r0)

Figure 1.4: According to Corollary 1.1.4, the initial curve Γ0 surrounded by disjoint spheres
will remain disjoint with all of them as they simultaneously shrink according to the curvature
shortening flow and the mean curvature flow, respectively.

As te1, . . . , em´1, νu forms an orthonormal basis, we get

ρ1ptq ě

„

1 ´

m´1
ÿ

i“1

xT pūptq, tq, eipȳptq, tqy
2

ȷ

max
1ďiăm

κipȳptq, tq “ 0.

For convenience, define a positive constant

c0 :“ mintε0, ρp0qu,

where ρp0q is positive from the assumption Γ0 Ă Ω`
0 . For contradiction, assume there is

t1 P p0,minttΓ, tΞuq such that ρpt1q P p0, c0q and ρpt1q ď ρptq for t P r0, t1s. Since the
function ρ is continuous on r0,minttΓ, tΞuq, there exists t0 P r0, t1q such that

ρpt1q ă ρpt0q and ρptq ă ε0 for t P rt0, t1s. (1.29)

Since ρ1 ě 0 almost everywhere on rt0, t1s, its integral must be non-negative and thus

ρpt1q ´ ρpt0q “

ż t1

t0

ρ1ptqdt ě 0.

As this contradicts equation (1.29), we conclude that ρptq ď c0. This proves the original
statement (1.19).

1.1.3 Ramifications

By choosing different moving hypersurfaces Ξt to bound the motion of space curves from
inside or outside, one can use Theorem 1.1.3 to uncover the following insights about the
long term behaviour of space curves during the curve shortening flow, see Figure 1.4.
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Corollary 1.1.4 (Corollary 1 from [MKB19]). LetΓt satisfy (1.1-1.2) with the initial condi-
tion Γ0 satisfying Γ0 X BBpx0, r0q “ ∅ for some x0 P Rm and r0 ą 0. Then

Γptq X BB
´

x0,
a

r20 ´ 2t
¯

“ ∅.

for all t between 0 and t. Furthermore, if Γ0 Ă Bpx0, r0q, the maximal time of existence t is
upper bounded by 1

2r
2
0 .

Proof. Consider the following family of moving hypersurfaces

Ξt :“ BB
´

x0,
a

r20 ´ 2t
¯

with the orientationdefinedbypositionofΓ0 in such away thatΓ0 Ă Ω`
0 . The hypersurface

Ξt evolves with normal velocity

v “ max
1ďiďm

κi “ ˘pr20 ´ 2tq´ 1
2 ,

with the sign determined by the orientation ofΞt. The statement trivially follows fromThe-
orem 1.1.3.

Theorem 1.1.3 gives us an alternative proof of the fact that spherical curves remain spherical
under the curve shortening flow. The original proof can be found in [He12] and several
ramifications of this result have been described in [Cor16; Kha15].

Corollary 1.1.5 (Corollary 2 from [MKB19]). Let Γt satisfy (1.1-1.2) with the initial curve
Γ0 which lies in a sphere Γ0 Ă BBpx0, r0q with center x0 P Rm and radius r0 ą 0. Then

Γt Ă BB
´

x0,
a

r20 ´ 2t
¯

for all t between 0 and the terminal time t.

Proof. Using Corollary 1.1.4 we can bound Γt between two concentric spheres

Γt Ă B
´

x0,
a

r20 ` ε´ 2t
¯

zB̄
´

x0,
a

r20 ´ ε´ 2t
¯

,

where0 ă ε ă r20 and the time t lies between0 andmin
␣

t, 12 pr20 ´ εq
(

. Letting ε approach
0 from above proves the statement.

Furthermore, we show how Theorem 1.1.3 can be used with non-spherical surfaces Ξt. In
this case, we assume the surface is a boundary of a convex set, see Figure 1.5, but one can also
prove other variations of the following statement.

Corollary 1.1.6 (Corollary 3 from [MKB19]). Let Γt satisfy (1.1-1.2) with the initial curve
Γ0 Ă Ω, whereΩ Ă Rn is a bounded convex domain with a C2-class boundary BΩ. Then

@t P r0, tq : Γt Ă Ω.
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Ξ0

t = 0 t > 0

Ξt

Γ0
Γt

t

Figure 1.5: Corollary 1.1.6 states thatΓt stays inside of the convex hull of the initial curveΓ0.

Proof. AsΩ is convex, we can choose a trivial static hypersurfaceΞt :“ BΩwith the normal
velocity v ” 0. In this case, all principal curvatures of BΩ are non-positive and thus the
assumption (1.18) from Theorem 1.1.3 is trivially satisfied.

Finally we apply Theorem 1.1.3 to curves bounded by a shrinking cylinder.

Corollary 1.1.7 (Cylindrical Estimate). Let the family of compact space curves Γt satisfy the
curve shortening flow (1.1-1.2) with the initial curve Γ0 which lies inside a cylinder

Cp,v,ρ0 :“ tx P R3 : }x´ p}2 ´ xx´ p, vy2 ď ρ20u,

where p, v P R3 are both constants and v is a unit vector. Then Γt will remain inside the
cylinderCp,v,ρptq, where the radius shrinks in time as ρptq “ pρ20 ´ 2tq

1
2 .

Proof. Themoving hypersurfaceΞt “ BCp,v,ρptq has principle curvaturesκ1 “ ρptq´1 and
κ2 “ 0. We can thus apply the same argument as in Corollary 1.1.4 and prove the statement
using Theorem 1.1.3.

Remark 1.1.8. UsingCorollary 1.1.7, one can further bound themaximal time of existence for
curves inside a cylinder in the same way we did with spheres in Corollary 1.1.4. It is important
to note that Corollary 1.1.7 does not work for non-compact curves. For instance, the Grim reaper
solution from Ex. 54. or the shrinking helix curve from Ex. 53. exist forever and do not stay
inside any cylinder that vanishes in finite time.

We end this subsection with another upper bound for the maximal time of existence t that
requires the following definition.

Definition 1.1.9 (Curve diameter). The diameter of space curve Γ is defined as

diampΓq “ 2 inftρ : Dx P R3,Γ Ă Bρpxqu, (1.30)

whereBρpxq is a ball of radius ρ centered at the point x.

Finally we state a terminal time estimate obtained from the generalized comparison principle.

Corollary 1.1.10. Let tΓtutPr0,tq satisfy (1.1-1.2) with the initial curve Γ0. Then we get

t ď 1
8diam

2
pΓ0q

Proof. The result is directly implied by Corollary 1.1.4.
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Γ0

Γt

Cp,v,ρ0

Cp,v,ρ(t)

p

v

t

Figure 1.6: Diagram depicting cylindrical estimate from Corollary 1.1.7.

1.2 Convexity Conditions

The curve shortening flow inR2 preserves convexity as we demonstrated in Corollary 1.0.18.
The same is true for the mean curvature flow in higher dimensional spaces. However, with
increasing codimension, the situation becomes more complex.

1.2.0 Convex Space Curves

Results from this section can be found in [MB20], where the following definition of con-
vexity is proposed. Although global convexity is not commonly defined for space curves, we
define this notion using Minkowski functional.

Definition 1.2.1 (Definition 3.1 from [MB20]). For a convex setK Ă Rn and pointy P Rn,
letM y

K : Rn Ñ R` denote theMinkowski functional prescribed by

M y
Kpxq :“ inf

␣

λ P R` : 1
λ px´ yq P K

(

.

for all x P Rn. We say that a closed curve Γ is convex if there exist y P Rn such that

M y
CpΓq

ˇ

ˇ

ˇ

Γ
” 1,

whereCpΓq is the convex hull of the curve Γ, i.e. the smallest convex superset of Γ.

The convexity defined above is in general not preserved during the curve shortening flow.

Proposition 1.2.2. The curve shortening flow inR3 does not preserve convexity.

Proof. We prove this statement by direct construction of counterexample (see Example 3.2
from [MB20]). Consider the initial curve Γ0 given by the following parametrization

γ0puq :“

»

–

cospαu3 ` βuq

sinpαu3 ` βuq

sinu´ 1
2 sinp2uq

fi

fl , α :“
π ` 2

2p1 ´ π2q
, β :“

π3 ` 2

2pπ2 ´ 1q
, (1.31)
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for allu P S1. One can show that this curve is convex according toDefinition 1.2.1, but itwill
lose its convexity while evolving according to the curve shortening flow. Since the curvature
of Γ0 at the point u “ 0 is greater than its curvature at u “ ω and u “ ´ω, where

ω :“ pπ3 ` 2q
1
2 pπ ` 2q´ 1

2 ,

γp0, tq departs from the line segmentCptγp´ω, tq, γpω, tquqwhich lies on the boundary of
CpΓtq. Thus Γt will stop being convex immediately after t “ 0.

We now know that the convexity proposed in Definition 1.2.1 is not preserved. But we will
later present a result stating that the convexity of their orthogonal projections is preserved.
To achieve that, we need to prepare several lemmas.

1.2.1 Star-shaped Curves

The following two lemmas are used in the proof of Proposition 1.2.6. Lemma 1.2.4 uses the
notion of star-shaped curves, which are boundaries of star-shaped sets. We call a closed curve
Γt star-shaped if it bounds a star-shaped region. Let us present a simple sufficient condition.

Lemma1.2.3 (Star-ShapedCurve). Consider a closed planar curveΓt such that there isx P R2

such thatγpu, tq´xandT pu, tqare linearly dependent for allu P S1. ThenΓt is star-shaped.

Wewill use the fact that small variations of convex curve will still be star-shaped. The follow-
ing lemma formalizes this idea.

Lemma 1.2.4. Let tΓtutPr0,tq be a family of closed planar curves such thatΓ0 is convex with a
C1-class parametrization. Then there exists t0 ą 0 such thatΓt is star-shaped for all t P r0, t0q.

Proof. For a fixed vector x for the interior of the initial curve Γ0, let us define

φpu, tq :“ }γpu, tq ´ x} ´ |xγpu, tq ´ x, T pu, tqy|.

for all pu, tq P S1 ˆ r0, tq. Note that this functional is continuous from the assumptions
and, furthermore, φ is non-negative due to the Cauchy-Schwarz inequality. Since the initial
curve is convex, φ ą 0 in t “ 0, it is also star-shaped with respect to any point inside. Thus
there is t0 P r0, tq such that x is in the interior of Γt and

φpu, tq ą 1
2 infS1

φp¨, 0q

for all u P S1 and t P r0, t0q, becauseφ is continuous. Thus the curveΓt is star-shapedwith
respect to the point x for all t P r0, t0q.

1.2.2 Orthogonal Projection

Note that Lemma 1.2.4 imposes regularity assumption on the parametrization γ but it does
not require the curve to follow the curve shortening equation (1.1-1.2). One more techni-
cal lemma is required before we prove the preservation of projection convexity. This lemma
shows the relationship between the original and projected normal vectors.

37



Lemma 1.2.5. Let P P LpR3q be an orthogonal projection of rank 2, i.e. dimRanP “ 2.
For a space curveΓ, denote the projected curvePΓ and its curvature κP . Let u P S1 denote any
fixed parameter such that the projected curve satisfies }BuPγpuq} ą 0 and κPpuq ą 0. Then

xPNpuq, NPpuqy ą 0,

whereNpuq is the principal normal vector of Γ at the point γpuq andNPpuq denotes the nor-
mal vector of the projected planar curvePΓ at pointPγpuq.

Proof. Note that the positivity of κP puq ą 0 also implies the positivity of κpuq ą 0 and
that bothN andNP are well defined at u. We thus can express

xPN,NPy “

B

1

κ
B2
sPγ,

1

κP}BsPγ}2
B2
sPγ ´

Bs}BsPγ}

κP}BsPγ}3
BsPγ

F

,

where we omitted writing the parameter u for better readability. Using the Cauchy-Schwarz
inequality, we immediately obtain the non-negativity condition xPN,NPy ě 0, because

κκP}BsPγ}4 xPN,NPy “ }B2
sPγ}2}BsPγ}2 ´ xBsPγ, B2

sPγy2 ě 0.

The equality xPN,NPy “ 0 would occur only if there was α ě 0 such that B2
sPγ “

αBsPγ. This implies that B2
uPγ “ βBuPγ with β “ αg ` 1

2Bug
2. Moreover,

κPNP “ }BuPγ}´2B2
uPγ ´ }BuPγ}´3Bu}BuPγ}BuPγ.

Altogether, this leads to the following formula for the curvature κP of the projected curve:

κP “ β}BuPγ}´2 ´ }BuPγ}´4
@

BuPγ, B2
uPγ

D

“ 0,

which contradicts the assumption κP ą 0 and thus the inequality is strict.

1.2.3 Convex Projection

From the counterexample given in Proposition 1.2.2, we know that the curve shortening flow
in higher codimension does not preserve convexity introduced in Definition 1.2.1. The fol-
lowing proposition states that the convexity of their orthogonal projections is preserved.

Proposition 1.2.6 (Proposition 3.5 from [MB20]). Let P P LpR3q be an orthogonal pro-
jection of rank 2 and let Γ0 be a space curve with a convex projection PΓ0. Assume that the
parametrization Pγp¨, tq of the projected curve PΓt is regular for all t P r0, tq. If Γt evolves
according to the curve shortening flow from Γ0, thenPΓt remains convex for all t P r0, tq.

Proof. For a contradiction, assume thatPΓt loses its convexity during the evolution. Wewill
formalize the proof using a functional ψ : S1 ˆ r0, tq Ñ R`

0 defined as

ψpu, tq :“ dist pPγpu, tq, BCpPΓtqq .

and another helper induced function of timeΨ: r0, tq Ñ R`
0 given by

Ψptq :“ max
uPS1

ψpu, tq. (1.32)

The proof is structured in the following way. It is divided into proofs of four individual steps
labeled (A), (B), (C), and (D). The combination of statements leads to the contradiction.
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(A) ψp¨, tq is continuous on S1 for each time t in r0, tq.

Since γp¨, tq is a continuous function, we know that for every t P r0, tq, u P S1 and ε ą 0
there exists a positive constant δ ą 0 such that |v ´ u| ă δ implies }γpv, tq ´ γpu, tq} ă ε
for all v P S1. We can estimate the value of ψ at v by the following expression

ψpv, tq “ inf
Y PG

}Pγpv, tq ´ Y } ď }Pγpv, tq ´ Pγpu, tq} ` inf
Y PG

}Pγpu, tq ´ Y },

where we denote G :“ BCpPΓtq for convenience. From the continuity we have

ψpv, tq ď }γpv, tq ´ γpu, tq} ` ψpu, tq ă ε` ψpu, tq.

By the same argument, we get ψpu, tq ă ε ` ψpv, tq and thus |ψpv, tq ´ ψpu, tq| ă ε
when |v ´ u| ă δ. This implies the continuity of ψp¨, tq on S1. Note that the continuity
also confirms thatΨ given by in Equation (1.32) is defined properly, because the maximum
is indeed attained. This function will be relevant because it vanishes iffPΓt is convex.

(B) The function ϕ is continuous on the whole domain r0, tq.

We aim to show that for all t P r0, tq, u P S1 and ε ą 0, there exists δ ą 0 such that for all
t1 P r0, tq and all v P S1, |v´ u| ă δ implies |ψpu, t1q ´ψpu, tq| ă ε. Since G is compact,
it contains Ỹ such that we can express ψpu, tq i the following form:

ψpu, tq “ inf
Y PG

}Pγpu, tq ´ Y } “ }Pγpu, tq ´ Ỹ }. (1.33)

For t1 close enough to t, the set G is close to G1 :“ BCpPΓt1 q in terms of the Hausdorff
distance. This means that there is Ỹ 1 P BG1 such that }Ỹ 1 ´ Ỹ } can be arbitrarily small if t1
and t are close enough. Then we can rewrite ψpu, t1q in the following form

ψpu, t1q “ inf
Y PG1

}Pγpu, t1q ´ Y } ď }Pγpu, t1q ´ Ỹ 1}

and further bound the expression by ψpu, tq and the positive constant ϵ as

ψpu, t1q ď }Pγpu, t1q ´ Pγpu, tq} ` }Pγpu, tq ´ Ỹ } ` }Ỹ ´ Ỹ 1}

“ }γpu, t1q ´ γpu, tq} ` }Ỹ ´ Ỹ 1} ` ψpu, tq ă ε` ψpu, tq.

Similarly ψpu, tq ă ε` ψpu, t1q. Therefore |ψpu, t1q ´ ψpu, tq| ă εwhen |t1 ´ t| ă δ.

We nowmove to the functionΨ and define the time when Γ looses its convexity as

t0 :“ inftt P p0, tq : Ψptq ą 0u. (1.34)

Note that the set tt P p0, tq : Ψptq ą 0u is nonempty by the assumption.

(C) The functionΨ vanishes at the time t0.
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Assume thatΨpt0q ą 0. SinceΨ is continuous on r0, tq, there is ε ą 0 such that

Ψptq ą 1
2Ψpt0q ą 0

for all t P pt0 ´ ε, t0q, which contradicts the definition of t0 from (1.34).

(D) There is t1 in pt0, tq such thatΨptq is non-increasing on pt0, t1q.

Since the projected curve PΓt is regular and P is a linear operator, the regularity of the
parametrization Pγ is at least C1. This allows us to use Lemma 1.2.4 and assume the exis-
tence of t1 P pt0, tq such thatPΓt is star-shaped for all t P pt0, t1q.

For a fixed time t P pt0, t1q, the function ψp¨, tq reaches its maximum at the point denoted
by u2 P S1. Let u1, u3 P S1 such that u2 P ru1, u3s and

Pγpu, tq P BCpPΓtq for u P tu1, u3u,

Pγpu, tq R BCpPΓtq for u P pu1, u3q.

Consider orthogonal basis te1, e2u of RanP such that the e1 is parallel to Pγpu3, tq ´

Pγpu1, tq andPγpu2, tq ´ Pγpu1, tq has points in the positive direction of e2. SincePΓt

is star-shaped, no small kinks can develop along the curve and we can express Ψptq as the
difference between the e2 coordinate ofPγpu2, tq andPγpu1, tq.

If κPpu2, tq ą 0, Lemma 1.2.5 and the motion law (1.1) imply that the e2 coordinate of
Pγpu2, tq is non-increasing in time. Similarly, when κPpu1, tq ą 0 and/or κPpu3, tq ą

0, the e2 coordinate of Pγpu1, tq and/or Pγpu3, tq is non-decreasing, respectively. When
κP “ 0 at u1, u2 or u3, the e2 coordinate of the corresponding point remains constant as
the motion takes place only in the e1 direction.

In all scenarios, the distance betweenPγpu2, tq and BCpPΓtq cannot increase and thusΨptq
cannot increase either. This proves the last statement (D).

Putting together the previous statements (B), (C) and (D) yields the following inequality

0 ď Ψptq ď Ψpt0q “ 0

for all t in pt0, t1q, which implies that Ψptq “ 0 for all t in pt0, t1q. This contradicts the
definition of t0 in (1.34). Thus the convexity ofPΓt must be preserved for all t P r0, tq.

1.3 Spherical Curves

The space curve Γ is called spherical if there exists a point x P R3 and a positive constant ρ
such that }x ´ y} “ ρ for all y P Γ. Their behaviour during the curve shortening flow has
been studied in [He12; MKB19] and some consequences were discussed in [Kha15]. This
section describes our results related to spherical curves from [MKB19].

1.3.0 Spherical Invariance

Before further analysis, one must establish the invariance of sphericity during the flow. It
has been shown in e.g. [He12] and an alternative proof is also in Corollary 1.1.5. Among the
ways to show this property, themost straightforward and enlightening proof is the following.
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Lemma 1.3.1. The curve shortening flow inR3 preserves spherical curves.

Proof. Let x P R3 be the center of sphere BBpx, ρ0q on which the curve Γ0 lies. Then

Bt}γ ´ x}2 “ 2xγ ´ x, Btγy “ 2xγ ´ x, B2
sγy

“ 2Bsxγ ´ x, Bsγy ´ 2}Bsγ}2 “ 2Bsxγ ´ x, T y ´ 2.

If Γt is spherical and centered around the point x, then }γ ´ x} does not depend on s and

0 “ Bs}γ ´ x}2 “ 2xγ ´ x, T y.

Thus, provided that the initial curve lies in BBpx, ρ0q, the time derivative Bt}γ ´ x} does
not depend on u P S1 either and the sphericity is preserved.

Remark 1.3.2. The proof of Lemma 1.3.1 gives us for free the evolution of the spherical radius

ρptq “ pρ20 ´ 2tq
1
2 ,

because ρ1ptq “ ´ρ´1ptq. This can also be deduced from the analytical solution of the great
circle of the shrinking sphere, which follows the same equation.

1.3.1 Heat Equation Lemma

We aim to show that spherical curves share similar long term characteristics with curves evolv-
ing in plane. Specifically, we will generalize the avoidance principle and present its ramifica-
tions. We will do so by generalizing the classical proof from [GH86], but several technical
obstacles must be resolved first.

Following the proof from [GH86], let us define the functional ϕ : T 2 ˆ r0, tq Ñ R` as

ϕpu1, u2, tq :“ }γpu2, tq ´ γpu1, tq}2, (1.35)

where T 2 “ S1 ˆ S1 is the 2-torus.

Lemma 1.3.3. Let Γ be a spherical space curve. Consider the functional ϕ from (1.35), but
without the time dependency. If ϕ “ ϕpu1, u2q has a local minimum at pu1, u2q P T 2 and
u1 ‰ u2, then the tangent vectors T pu1q and T pu2q are collinear.

Proof. The functional ϕ has an extremum at pu1, u2q and thus its gradient vanishes:

∇ϕpu1, u2q “ 2

„

xγpu1q ´ γpu2q, }Buγpu1q}T pu1qy

xγpu2q ´ γpu1q, }Buγpu2q}T pu2qy

ȷ

“

„

0
0

ȷ

.

Since we only consider regular curves the parametrisation rate Buγ is positive everywhere and
the vanishing gradient implies the following orthogonality conditions:

xT pu1q, γpu2q ´ γpu1qy “ xT pu2q, γpu2q ´ γpu1qy “ 0.
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Moreover, withx denoting the center of the sphere, γpu1q´x and γpu2q´x are orthogonal
to the tangent plane of the sphere at the point γpu1q and γpu2q, respectively. Thus T pu1q

and T pu2q are orthogonal to γpu1q ´ x and γpu2q ´ x, respectively. Together, we have

T pu1q P spanpγpu2q ´ γpu1qqK X spanpγpu1q ´ xqK,

T pu2q P spanpγpu1q ´ γpu2qqK X spanpγpu2q ´ xqK,

where spanΩ and ΩK denote the linear span and the orthogonal complement of the set Ω,
respectively. From the linearity of the inner product, we have

T pu1q, T pu2q P spanpγpu1q ´ xqK X spanpγpu2q ´ xqK. (1.36)

Since u1 ‰ u2, the intersection of spanpγpu1q ´ xqK and spanpγpu2q ´ xqK from (1.36)
is a one-dimensional affine space, which proves the original statement.

Remark 1.3.4. The statement of Lemma 1.3.3 is specific to spherical curves inR3 and does not
generalize to spherical curves in higher dimensional spaces. As a counterexample in dimension
4, consider the following curve with the parametrization

γpuq :“

»

—

—

–

sinpcosuq

cospcosuq sinpsinp2uqq

cospcosuq cospsinp2uqq cosp 1
2 sinuq

cospcosuq cospsinp2uqq sinp 1
2 sinuq.

fi

ffi

ffi

fl

,

One can verify that this curve lies not a unit 3-sphere and yet the functional ϕ achieves its local
minimum at the point pu1, u2q “

`

π
2 ,

3π
2

˘

but xT pu1q, T pu2qy “ 0.

Another lemmawewill need is a straightforward generalisation of result from [GH86] to our
codimension two setting and works even for non-spherical curves.

Lemma 1.3.5 (Generalization of Lemma 3.2.2 from [GH86]). The functional ϕ defined in
(1.35) satisfies a strictly parabolic partial differential equation related to the heat equation:

Btϕ´ ∆sϕ “ ´4, (1.37)

where the arc-length Laplace operator∆s is formally defined as∆s “ B2
s1 ` B2

s2 .

Proof. Using Btγ “ κN and the chain rule leads to the time derivative

Btϕpu1, u2, tq “ 2xγpu1, tq ´ γpu2, tq, κpu1, tqNpu1, tq ´ κpu2, tqNpu2, tqy.

Moreover, using the Frenet-Serret formulae yields

B2
s1ϕpu1, u2, tq “ 2 ` 2xγpu1, tq ´ γpu2, tq, κpu1, tqNpu1, tqy,

B2
s2ϕpu1, u2, tq “ 2 ´ 2xγpu1, tq ´ γpu2, tq, κpu2, tqNpu2, tqy.

Subtracting Btϕ´ ∆sϕ indeed leads to a constant ´4.
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γ1(0) = γ2(0)

γ1(L)

Γ1

Γ2

γ2(L)

Figure 1.7: Visualization of the Schur Comparison Theorem.

1.3.2 Generalised Schur Comparison

The following Lemma ensures the absence of small kinks in a curve with bounded curva-
ture. The original result for planar curves is due to Schur [Sch21] and a generalized version
was introduced by Schmidt [Sch25]. The following formulation of Schur Theorem is from
[Lóp11]. The visual interpretation of the result is depicted in Figure 1.7.

Lemma 1.3.6 (Generalized Schur Comparison Theorem). Let Γ1 and Γ2 be both arc-length
parametrized open space curves with the same lengthL ą 0. Assume that Γ1 is planar and

Γ1 Y BCpΓ1q Ă BCpΓ1 Y BCpΓ1qq.

Let κ1 and κ2 denote curvatures of Γ1 and Γ2, respectively. And assume that κ1psq ě κ2psq
for all s P r0, Ls. Then we have }γ1p0q ´ γ1pLq} ď }γ2p0q ´ γ2pLq}.

The generalized Schur Comparison Theorem, stated in Lemma 1.3.6, allows us to adapt
Corollary 3.2.4 from [GH86] for our higher codimension setting.

Lemma1.3.7 (GeneralizationofCorollary 3.2.4 from[GH86]). LetΓt beuniformly bounded
curvature κ by a constantC ą 0. Then the functional ϕ from (1.35) satisfies

ϕpu1, u2, tq ě
4

C2

„

sin

ˆ

2

C

ż u2

u1

}Buγpu, tq}du

˙ȷ2

,

for all u1, u2 P S1 and all t P r0, tq.

Proof. SettingΓ1 to a circular arc with radiusC´1 in Lemma 1.3.6 yields the inequality.

1.3.3 Spherical Avoidance Principle

With Lemma 1.3.3, 1.3.5, 1.3.6 and 1.3.7, we are ready to proof the avoidance principle for
spherical curves. It states that embedded spherical curves with bounded curvature cannot
intersect themselves during the curve shortening flow in R3. The idea of the proof and its
steps are based on the planar version of this result from [GH86].

Proposition 1.3.8 (Proposition 4.6 from [MB20]). Let tΓtutPr0,tq be a family of space curves
evolving according to the curve shortening flow from an initial curveΓ0, which is an embedded,
spherical curve. Assume that the curvature κ can be uniformly bounded by a positive constant
C for all u P S1 and t P r0, tq. Then Γt will remain embedded for all t P p0, tq.
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2

t

t = 0

t = t

Figure 1.8: Decomposition of T 2 ˆ r0, tq into E andD. Linear arrows and double arrows
indicate the fundamental polygon of each slice in time.

Proof. Let us first split the domain T 2 ˆ r0, tq of the ϕ from (1.35) into two disjoint parts

E :“

"

pu1, u2, tq P T 2 ˆ r0, tq :

ż u2

u1

}Buγpu, tq}du ă
π

C

*

(1.38)

end the remainderD “
`

T 2 ˆ r0, tq
˘

z E . Note that from this construction,

ϕpu1, u2, tq “ 0

implies u1 “ u2 for all pu1, u2, tq P E due to Lemma 1.3.7. Thus, to prove Γt will remain
embedded, it suffices to show that ϕpu1, u2, tq ą 0 everywhere on D. Furthermore, all
points pu1, u2, tq on the boundary BE satisfy

ż u2

u1

}Buγpu, tq}du “
π

C

from the construction. Together with Lemma 1.3.7, we can lower bound ϕ on BE by a con-
stant 4

C2 . Because Γ0 is embedded and closed, there existsm1 P
`

0, 4
C2

˘

such that

inf
BD
ϕpu1, u2, tq ě min

"

inf
BDzBE

ϕpu1, u2, tq,
4

C2

*

ą m1.

We extend the definition of ϕ from (1.35) for ε ą 0 and pu1, u2, tq from T 2 ˆ r0, tq to

ϕεpu1, u2, tq :“ ϕpu1, u2, tq ` εt. (1.39)

For contradiction, assume there existsm2 P p0,m1q and puo1, u
o
2, t

oq P D such that

ϕεpuo1, u
o
2, t

oq “ m2,

and without loss of generality let to be the smallest possible. Since ϕε attains its local mini-
mum at puo1, u

o
2, t

oq, we can use Lemma 1.3.3 to conclude that

|Bs1Bs2ϕεpuo1, u
o
2, t

oq| “ 2|xT puo1, t
oq, T puo2, t

oqy| “ 2}T puo1, t
oq}}T puo2, t

oq} “ 2.
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∂B

Γ0,α1

Γ0,α2

Figure 1.9: Two disjoint and mutually spherical curves Γ0,α1
and Γ0,α2

will remain embed-
ded and mutually spherical while shrinking without touching.

Since to is the smallest possible, the derivative Btϕεpuo1, u
o
2, t

oq is non-positive and

det

„

B2
s1ϕεpuo1, u

o
2, t

oq Bs1Bs2ϕεpuo1, u
o
2, t

oq

Bs2Bs1ϕεpuo1, u
o
2, t

oq B2
s2ϕεpuo1, u

o
2, t

oq

ȷ

ě 0. (1.40)

With the Young inequality and inequality (1.40) we can bound the arc-length Laplacian as

∆sϕεpuo1, u
o
2, t

oq “ B2
s1ϕεpuo1, u

o
2, t

oq ` B2
s2ϕεpuo1, u

o
2, t

oq

ě 2pB2
s1ϕεpuo1, u

o
2, t

oq B2
s2ϕεpuo1, u

o
2, t

oqq
1
2

ě 2|Bs1Bs2ϕεpuo1, u
o
2, t

oq| “ 4.

Together with Lemma 1.3.5 and the definition of ϕε in (1.39) we obtain the inequality

0 ě Btϕεpuo1, u
o
2, t

oq “ Btϕpuo1, u
o
2, t

oq ` ε “ ∆sϕpuo1, u
o
2, t

oq ´ 4 ` ε

“ ∆sϕεpuo1, u
o
2, t

oq ´ 4 ` ε ě ε,

which contradicts the initial assumption ε ą 0 and thus proves the statement.

1.3.4 Mutually Spherical Curves

Similarly to its planar counterpart, the spherical avoidance principle can be extended to mul-
tiple independent curves subjected to the same motion law. In our case, however, the curves
must initially lie on either a disjoint sphere or on the same one. To capture this behaviour, we
introduce the notion of mutually spherical curves.

Definition 1.3.9 (Definition 4.7 from [MB20]). LetA be a finite set of indexes. The family
of space curves tΓαuαPA is mutually spherical if and only if there is x P R3 such that for each
α P A there is r ą 0 for which }y ´ x} “ r for all points y P Γα.

Corollary 1.3.10 (Corollary 4 from [MB20]). Let A denote some finite set of indices and
tΓt,αutPr0,tq,αPA be a family of curves all evolving according to the curve shortening flow from
a family of initial curves tΓαuαPA that are mutually spherical and disjoint. Furthermore,
assume that the curvatures of the evolving families of curves can be uniformly bounded. Then
the curves Γt,α will remain disjoint for all t P p0, tq.
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Remark 1.3.11. The avoidance principle also works when the curves are on different spheres
which bound balls that are all disjoint. Since they will remain on these shrinking spheres, they
can never intersect either.

The example of how the spherical avoidance principle affects severalmutually spherical curves
under the curve shortening flow is depicted in Figure 1.9.

1.4 Conclusions

The long-term behavior of curve shortening flow in higher codimensional spaces diverges sig-
nificantly from the well-understood planar case. While classical results such as the Grayson-
Gage-Hamilton Theorem describe the behavior in R2, higher dimensions introduce com-
plexities, including formation of different singularities and lack of preservation of convexity.

This chapter covers two author’s publications on this topic. The first contribution [MKB19]
introduces a generalized comparisonprinciple for bounding space curveswith respect tomov-
ing hypersurfaces. The second article [MB20] analyzes convexity preservation and proves the
Avoidance principle for spherical curves.

The study of higher codimension flows is an active field with recent developments and open
problems. The analysis of these problems often requiresmore complex apparatus fromdiffer-
ent fields like topology as the normal vector can be non-unique or undefined. To tackle these
issues we investigated the theory of nondegenerate homotopies in article [MB22b] which is
covered in Chapter 3.
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2
Minimal Surface Generating Flow

This chapter covers results from author’s article [MB22a]. In particular, it introduces two
concepts that play a significant role in the context of this thesis and author’s work.

First is the notion of trajectory surface, which is generated by the evolving curve. It can be
used as a tool for studying the long term behaviour of any geometric flow of curves. In this
chapter, we define these surfaces and describe their geometric properties.

The second main contribution of the chapter is the minimal surface geometric flow, which
was first introduced and studied in [MB22a]. This flow generates surfaces of zero mean cur-
vature bounded by the initial curve and thus can be used for their analysis.

2.0 Introduction

Minimal surfaces are not just mathematically intriguing but also useful in various applied
fields. Originally conceptualized to model soap films stretched across wireframes, minimal
surfaces have been studied in the context of cell membranes [LL14], crystal structures in zeo-
lites [AHB85; And+88; Scr76], and even in general relativity as representations of black hole
apparent horizons [HI01].

The aesthetic qualities of minimal surfaces also influence architecture and art, as seen inMu-
nich’s Olympiastadion. More recently, periodicminimal surfaces have been explored for new
compositematerial development [AAR16], and soap filmdynamicswithmoving boundaries
have been investigated [Gol+10; Gol+14]. In knot theory, surfaces constrained by a fixed
boundary are related to the concept of Seifert surfaces and the genus knot invariant [WC06].

Minimal surfaces with a given boundary can be computed and analysed using multiple dif-
ferent existing approaches. The level set method focuses on solving the mean curvature flow,
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Figure 2.1: General trajectory surface geometry.

ultimately converging to a surface with zero mean curvature [Cho93; Dzi90]. Another ap-
proach numerically approximates the Weierstrass-Enneper representation formulas [Ter90].
Alternative methods include the stretched grid technique and the discrete differential geom-
etry approach, as elaborated in [BHS06; PP93; SW19].

2.0.0 Trajectory Surface

Themaindriving concept behind articles [MB22a] and [MB23] is the notionof the trajectory
surface for an evolving curve. It is the set of points swept out by the evolving curve and can
be seen as a surface parametrized by the curves parameter u P S1 and the time coordinate
t P r0, tq. We formalize this notion in the following definition.

Definition 2.0.1 (Definition 2.1 from [MB22a]). Let tΓtutPr0,tq be a family of space curve
inR3 that evolve according to a given geometric flow with velocities vN and vB and the initial
condition Γ0. We define the trajectory surfaceΣt formally as

Σt :“
ď

tPr0,tq

Γt.

One can also view the trajectory surface Σt as a parametric surface given by the map γpu, tq,
where the time t is treated just as another parameter parameter in the same way as u.

These surfaces may not be embedded even if all of the individual curves are. Note thatΣt is
not related to moving surfaces described in Section 1.1.

Remark 2.0.2. After their introduction in [MB22a], trajectory surfaces were further analyzed
in [ZZW22], which includes a description of properties of u-curves, i.e. open curves given by the
parametrization γp¨, uq with a fixed parameter u P S1 defined on the time domain r0, tq.

2.0.1 Surface Geometry

To analyze the generated trajectory surfaces, we describe their geometry in terms of the geom-
etry of the evolving curve and the velocity vector of the given motion law. We first compute
the fundamental forms and then provide formulas for the Gauss and mean curvatures.

Lemma 2.0.3. The first fundamental form I of the trajectory surfaceΣt can be represented as
a diagonal matrix I ” diagpg2, v2q, where v2 :“ v2N ` v2B is the magnitude of velocity.
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Proof. The first fundamental form can be expressed in terms of the parametrisation of Γt as

I ”

„

E F
F G

ȷ

“

„

}Buγ}2 xBuγ, Btγy

xBtγ, Buγy }Btγ}2

ȷ

.

Using the equations (5-8), we obtain the elements of the matrix representation of I:

E “ g2, F “ 0, G “ v2N ` v2B . (2.1)

The first fundamental form is thus indeed diagonal with entries g2 and v2.

The second fundamental form, presented in the next lemma, is more involved but computed
in the same way as the first fundamental form.

Lemma 2.0.4. Elements of the second fundamental form II of the trajectory surfaceΣt read

L “ ´
g2κvB
v

, M “ g

„

vNBsvB ´ vBBsvN
v

` τv

ȷ

,

N “
vNBtvB ´ vBBtvN

v
`
v

κ
pvNBsτ ` 2τBsvN ` B2

svB ´ vBτ
2q,

whereL andN are the diagonal entries,M lies on the antidiagonal and v :“ pv2N ` v2Bq
1
2 .

Proof. As in Lemma 2.0.3 we can express the second fundamental form in terms of γ:

II ”

„

L M
M N

ȷ

“

„

xB2
uγ, ny xBuBtγ, ny

xBtBuγ, ny xB2
t γ, ny

ȷ

,

where the unit normal vector n of the trajectory surfaceΣt can be expressed as

n “ }Buγ ˆ Btγ}´1Buγ ˆ Btγ “ pv2N ` v2Bq´ 1
2 pvNB ´ vBNq.

Straightforward algebraic manipulation and equations (5-8) yield the statement.

With the equations for both fundamental forms from the previous lemmas, we are ready to
write down the formulas for the Gauss curvatureK and mean curvatureH .

Lemma 2.0.5. We can writeK andH in terms of the functions vN , vB , κ and τ as

K “κvB
vBBtvN ´ vNBtvB

v4
´ vB

vNBsτ ` 2τBsvN ` B2
svB ´ vBτ

2

v3

´
pvNBsvB ´ vBBsvN q2

v4
´ 2τ

vNBsvB ´ vBBsvN
v2

´ τ2,

H “ ´
κvB
v

`
vNBtvB ´ vBBtvN

v3
`
vNBsτ ` 2τBsvN ` B2

svB ´ vBτ
2

κv
.

Proof. The Gauss curvatureK and the mean curvatureH ofΣt are then computed as

K “
det II

det I
“

LN ´ M2

EG ´ F2
, H “ TrpIIpIq´1q “

L
E

`
N
G
.

The formulas above are then obtained by straightforward algebraic manipulation.
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2.0.2 Motion Law

Assume vB “ 0 and the curve is moving only in the direction of the principal normal vector
N . The expression for the mean curvatureH significantly simplifies to

H “ p|vN |κq´1pvNBsτ ` 2τBsvN q. (2.2)

It is worth noting that in the case of vB “ 0, the Gaussian curvatureK “ ´τ2 does not
depend on the normal velocity term vN . Moreover,K is always non-positive and the surface
Σt is developable (meaningK “ 0) if and only if the curve Γt is evolving in a plane.

Furthermore, when vB “ 0we can rewrite the mean curvature as

H “
vNτ

|vN |κ

„

Bsτ

τ
` 2

BsvN
vN

ȷ

“
vNτ

|vN |κ
Bs plog |τ | ` 2 log |vN |q .

This means that we can ensure that H is zero everywhere only when we set vN “ Fτ´ 1
2

withF “ F ptq being any function constant with respect to the parameter u. We choose the
F ” 1 for simplicity and introduce the newmotion law in the next definition.

Definition 2.0.6 (Definition 3.1 from [MB22a]). Let Γ0 be a closed space curve with positive
curvature and torsion. We say that a family of curves tΓtutPr0,tq is evolving according to the
minimal surface generating flow if its parametrization γ satisfies the initial value problem:

Btγ “ τ´ 1
2N in S1 ˆ p0, tq, (2.3)

γ|t“0 “ γ0 in S1, (2.4)

where γ0 is parametrization of the initial curve Γ0 and τ is the torsion of the curve.

2.1 Technical Preliminaries

In this section, we first adapt the necessary evolution equations of geometric quantities from
their general form to the minimal surface generating flow and then prepare other useful lem-
mas by applying the Gauss-Bonnet formula to the generated trajectory surface.

2.1.0 Evolution Equations

For the convenience of the reader, we list the evolution equations for geometric quantities
derived from Proposition 0.4.3 and adjusted to the specific geometric flow from Definition
2.0.6.

Lemma 2.1.1 (Evolution equations). The local geometric quantities g, κ and τ satisfy

Btg “ ´gκτ´ 1
2 , (2.5)

Btκ “ B2
spτ´ 1

2 q ` τ´ 1
2 pκ2 ´ τ2q, (2.6)

Btτ “ 2κτ
1
2 . (2.7)
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BΓt
= nΣt

Figure 2.2: Trajectory surface geometry for the minimal surface generating flow.

The evolution equations for the Frenet frame can be written in the following compact form

Bt

»

–

T
N
B

fi

fl “

»

–

0 Bspτ´ 1
2 q τ

1
2

´Bspτ´ 1
2 q 0 0

´τ
1
2 0 0

fi

fl ¨

»

–

T
N
B

fi

fl . (2.8)

The first immediate application of Lemma 2.1.1 is an important result for the existence of
the solution. Because the normal velocity vN “ τ´ 1

2 is ill-defined when τ is zero, we need
to ensure its positivity throughout the flow. We achieve this in the following proposition.

Proposition 2.1.2 (Proposition1 from[MB22a]). LetΓ0 be a space curvewithnon-vanishing
curvature and positive torsion. Then the torsion τp¨, tq remains positive everywhere for all t P

r0, tq. Moreover, the function τpu, tq is strictly increasing in time for any fixed u P S1.

Proof. From (2.7) from Lemma 2.1.1 we get surprisingly simple evolution formula

Btτ
1
2 “ 1

2τ
´ 1

2 Btτ “ 1
2τ

´ 1
2 p2τ

1
2κ` Bsr 1κ pτ´ 1

2 Bsτ ` 2τBspτ´ 1
2 qqsq “ κ. (2.9)

Since the curvature κ is positive by the assumptions, we can use (2.9) to estimate

τpu, t1q “

„

τpu, t0q
1
2 `

ż t1

t0

κpu, tqdt

ȷ2

ą τpu, t0q

for all u P S1 and all t0, t1 P r0, tq such that t0 ă t1. Thus τ strictly increases.

2.1.1 Gauss-Bonnet Theorem

The Gauss-Bonnet theorem relates the global geometry of a surface to its topological prop-
erty, namely its Euler characteristic. General results that connect topology and geometry in
a non-trivial way, like the Milnor-Fáry theorem or the Călugăreanu theorem, are often very
useful and the same is true for this formula. Let us first restate the Gauss-Bonnet theorem.

Theorem2.1.3 (Gauss-Bonnet theorem, see e.g. [Car76]). LetM be a compactRiemannian
manifold of dimension 2 and Euler characteristic χpMq. Then

ż

M
K dA`

ż

BM
κg ds “ 2πχpMq, (2.10)

whereK is the Gauss curvature ofM and κg is the geodesic curvature of the boundary BM.
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Let us also recall, e.g. from [Hat02], that the Euler characteristic of a surfaceM is given by

χpMq “ b0pMq ´ b1pMq ` b2pMq, (2.11)

where bipMq denotes the i-th Betti number, i.e. the rank of the corresponding homology
groupHipMq. Wewill use this formula to compute the Euler characteristic of the trajectory
surface in the following result which applies the Gauss-Bonnet theorem to our setting.

2.1.2 Total Curvature

The total curvature is an extremely useful quantity as is can be used in various estimates due
to the theorems of Fenchel andMilor-Fáry. In our case, this integral also appears in theGauss-
Bonnet formula stated in the previous subsection. This fact is used in the following lemma.

Lemma 2.1.4 (Lemma 3.3 from [MB22a]). The total curvature for the curve evolving accord-
ing to the minimal surface generating flow in the time interval r0, tq satisfies

ż

Γt

κds´

ż

Γ0

κds “ ´

ż t

0

ż

Γt

τ
3
2 dsdt. (2.12)

Proof. Applying the Gauss-Bonnet theorem (stated in Theorem 2.1.3) toΣt yields
ż

Σt

K dA`

ż

BΣt

κg ds “ 2πχpΣtq, (2.13)

where the boundary BΣt “ Γ0 Y Γt consist of two curves, the initial Γ0 curve and terminal
one Γt. Next, we will expand all terms of Equation (2.13) starting with the first integral

ż

Σt

K dA “

ĳ

T ˆS1

Kτ´ 1
2 g du^ dt “ ´

ż t

0

ż

Γt

τ
3
2 dsdt,

where T denotes the time interval r0, tq and the area element dAwas computed as

dA “ pEG ´ F2q
1
2 du^ dt “ gτ´ 1

2 du^ dt,

where E ,G andF are elements of the first fundamental form defined in (2.1). For the second
integral in (2.13), we use the fact that n “ B on BΣt which consists of two parts

BΣt “ Γ0 Y Γt

and the geodesic curvature satisfies κg “ κ on Γ0 and κg “ ´κ on Γt. Thus we have
ż

BΣt

κg ds “

ż

Γ0

κds´

ż

Γt

κds.

Finally, since the surfaceΣt is homeomorphic to a cylinder its homology groups are

H0pΣtq – Z, H1pΣtq – Z, H2pΣtq ” 0.

This means that b0pΣtq “ b1pΣtq “ 1 and all higher Betti numbers are zero. Thus

χpΣtq “ b0pΣtq ´ b1pΣtq ` b2pΣtq “ 0.

Substituting all three terms from above into the original equation (2.13) yields (2.12).
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Remark 2.1.5. Equation (2.12) can also be confirmed by a straightforward differentiation

d

dt

ż

Γt

κds “

ż

S1

κBtg ` Btκg du “

ż

Γt

B2
spτ´ 1

2 q ´ τ
3
2 ds “ ´

ż

Γt

τ
3
2 ds,

where the middle integral of B2
spτ´ 1

2 q is zero because the curve Γt is closed.

The formula (2.12) will be used in several important estimates later, but it also has a straight-
forward implication for curves shrinking to a point.

Proposition 2.1.6. Let tΓtutPT be a family of space curves evolving according to the minimal
surface generating flow. Assume that the curveΓt shrinks to a point at the terminal time t. This
assumption means that the length LpΓtq asymptotically vanishes as t approaches t. Then the
total curvature of the initial curve Γ0 must be strictly larger than 4π.

Proof. In this case, the final surfaceΣt including the limiting point toward which the curve
shrinks is homeomorphic to a disk instead of a cylinder. The Euler characteristic is then equal
to 1, not 0 as before, and the Gauss-Bonnet theorem implies

´

ż t

0

ż

Γt

τ
3
2 dsdt`

ż

Γ0

κds´ lim
tÑt

ż

Γt

κds “ 2π.

After applying the Fenchel theorem and simple algebraic manipulation, we get an inequality
ż

Γ0

κds ě 4π `

ż t

0

ż

Γt

τ
3
2 dsdt.

Since the integral is strictly positive, the total curvature must be larger than 4π.

2.2 Basic Properties

Let us explore several basic properties of the minimal surface generating flow introduced in
Definition 2.0.6. We first show a trivial analytical solution in Subsection 2.2.0, then present a
preserved geometric quantity in Subsection 2.2.2 and bound the evolving curve in the convex
hull of the initial condition using the Maximum principle in Subsection 2.2.1.

2.2.0 Analytical Solution

Analytical solutions to partial differential equations are often useful for gaining insight into
the behaviour of general solutions and can help as sanity checks for computational experi-
ments. In the case of the minimal surface generating flow, we only have one analytical solu-
tion, for the highly symmetric case of the helix curve that traces out the helicoid surface.

Example 2.2.1 (Example 2 from [MB22a]). In this example, we show that the helix curve gen-
erates helicoid as its trajectory surface. Thanks to the symmetries of the helix and zero binormal
velocity term, the solution has to be in the following form:

γpu, tq :“ rρptq cosu, ρptq sinu, ξusT ,

γ0puq :“ rρ0 cosu, ρ0 sinu, ξusT ,
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Γt

Γ0

Γt

Σt

2πξ

ρ0

ρ(t)

Figure 2.3: Diagram of the helix analytical solution from Example 2.2.1.

where both ρ0 and ξ are positive constants. As the torsion can be retrieved from ρ and ξ as

τp¨, tq ” ξpρptq2 ` ξ2q´1

and the normal vector points toward the central line, this setup reduces to an equation

9ρptq “ ´pξ´1ρptq2 ` ξq
1
2 .

This ordinary differential equation has a unique solution in the following implicit form

t “ t´ 1
2ξ

3
2 log

“

ξ´1ρptq ` ζptq
‰

´ 1
2ξ

1
2 ρptqζptq,

where the terminal time t is determined by the initial condition ρ0 and ζ is given by

ζptq2 :“ 1 `
`

ξ´1ρptq
˘2
.

Thus the radius ρ of the helix monotonically strictly decreases and asymptotically approaches
zero as the helix approaches a straight line as the time t tends to the finite t.

One should note that this example is an open curve. No analytical solution of a closed curve
evolving by the minimal surface generating flow is currently known.

2.2.1 Integral ofMotion

Integrals of motion are useful for analysis of the long term behaviour as well as for the verifi-
cation of numerical schemes. In the case of the minimal surface generating flow, we have the
following curious preserved interval.

Corollary 2.2.2 (Corollary 1 from [MB22a]). LetΓt evolve according to the minimal surface
generating flow. Then the integral of τ 1

2 along the curve Γt does not change during the flow.

Proof. Differentiation of the integral using the formulae (2.5-2.8) leads to

d

dt

ż

Γt

τ
1
2 ds “

d

dt

ż

S1

τ
1
2 g du “

ż

S1

Btpτ
1
2 qg ` τ

1
2 Btg du. (2.14)

After algebraic manipulation, all terms in the integral (2.14) cancel out.
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Γt

(a) Restriction of Γt inside of half-planes.

Γt

(b) Restriction within the convex hull.

Figure 2.4: Stages of restriction of Γt from Lemma 2.2.4 to Proposition 2.2.5.

As all other flows with positive velocity term in the principal normal direction, the minimal
surface generating flow reduces the length of the curve in time.

Proposition 2.2.3 (Proposition 2 from [MB22a]). The lengthLpΓtq of a curveΓt under the
minimal surface generating flow monotonically strictly decreases in time.

Proof. Straightforward differentiation and the application of formulae (2.5-2.8) yields

d

dt
LpΓtq “

ż

S1

Btg du “ ´

ż

Γt

κτ´ 1
2 ds.

The integrand in the last term is always non-negative and, furthermore, it must be positive
on a part of the curve with a non-trivial one-dimensional measure.

We later show the length for closed curves must decrease to zero if the flow exists forever.

2.2.2 Maximum Principle

In this subsection, we use amaximumprinciple-like argument to bound the parametric func-
tion γ inside a convex hull of its initial range. We prove this fact for the minimal surface gen-
erating flow, but the following arguments are applicable to any geometric motion law with
no binormal velocity and non-negative principle normal velocity component.

Lemma 2.2.4 (Improved Lemma 3.2 from [MB22a]). Let B denote an orthonormal basis of
R3. For an evolving family of closed curves Γt and all basis vectors b P B, we define

mbptq :“ min
uPS1

xb, γpu, tqy and mbptq :“ max
uPS1

xb, γpu, tqy.

If Γt is evolving according to the minimal surface generating flow, it must satisfy

mbp0q ď xb, γpu, tqy ď mbp0q

for all basis vectors b P B and all times t in r0, tq. Thus Γt must remain within a minimal
cuboid containing Γ0 which is axis-aligned with respect to the basis vectors from B.
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Proof. SinceS1 is compact andγp¨, tq is continuous, the functionϕb,t :“ xb, γp¨, tqy attains
its minimum and maximum for fixed b P B and t P r0, tq at some points ubptq P S1 and
ubptq P S1, respectively. The function ϕb,t must then satisfy

Buϕb,tpubptqq “ 0 “ Buϕb,tpubptqq,

B2
uϕb,tpubptqq ě 0 ě B2

uϕb,tpubptqq.

Furthermore, the same inequalities at points ubptq and ubptq hold for the Btϕb,t because

Btxb, γy “ xb, Btγy “ τ´ 1
2 xb, BtNy “ pκτ

1
2 g3q´1rgxb, B2

uγy ´ Bugxb, Buγys.

Thus the functionmbptq is increasing andmbptq is decreasing, or in another words

mbp0q ď mbptq ď mbptq ď mbp0q

for all times t P r0, tq and all basis vectors b P B, which proves the statement.

Proposition 2.2.5 (Proposition 3 from [MB22a]). Let tΓtutPr0,tq be a family of closed curves
evolving according to the minimal surface generating flow (2.3-2.4) with the initial condition
Γ0. Then Γt remains inside the convex hull of the initial curve Γ0 for all times t in r0, tq.

Proof. Applying Lemma 2.2.4 with respect to all orthonormal basesB from the Stiefel man-
ifold V3pR3q restricts the curveΓt within the intersection of all minimal cuboids containing
the initial curve Γ0, i.e. with the convex hull of Γ0.

2.3 Long Term Behaviour

This section covers long termproperties from [MB22a] of the theminimal surface generating
flow. Inparticular, we show that the length vanishes at t “ 8 in Subsection2.3.0 andprovide
global area and terminal estimates in Subsections 2.3.1 and 2.3.3, respectively.

2.3.0 Length Limit

The minimal surface generating flow shrinks the curve as we shown in Proposition 2.2.3.
However, this claim can be made even stronger. Using Lemma 2.1.4, we can show that the
length must shrink to zero provided the flow exists long enough.

Proposition 2.3.1 (Proposition 4 from [MB22a]). Let the initial curve Γ0 satisfy

inf
Γ0

τ “ inf
uPS1

τpu, 0q ą 0.

Let Γt evolve according to the minimal surface generating flow and assume that the flow exists
forever, i.e. t “ 8. Then Γt shrinks to a point as its length vanishes in the limit.
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Proof. Proposition 2.1.2 and the assumptions for the initial curve Γ0 allow us to estimate
ż t

0

ż

Γt

τ
3
2 dsdt ě

ż t

0

inf
Γt

τ
3
2

ż

Γt

dsdt ě inf
Γ0

τ
3
2

ż t

0

ż

Γt

dsdt.

Reversing the order of the inequality and applying equation (2.12) and the Fenchel theorem
gives the following estimate of the length integrated through time

ż t

0

LpΓtqdt “

ż t

0

ż

Γt

dsdt ď
1

infΓ0 τ
3
2

ˆ
ż

Γ0

κds´ 2π

˙

. (2.15)

The upper bound is finite and does not depend on time. Furthermore, the length is always
non-negative. If t “ 8, this forces the integrandLpΓtq to approach zero as t Ñ t.

2.3.1 Area Estimate

The formula for the total curvature obtained from the Gauss-Bonnet theorem ca be used for
global area estimate of the trajectory surface swept by the evolving curve.

Proposition 2.3.2 (Proposition 5 from [MB22a]). LetApΣtq denote the area ofΣt, i.e.

ApΣtq :“

ż

Σt

dA.

Assume that Γt evolves according to the minimal surface generating flow (2.3-2.4) from the
initial condition Γ0 which satisfies τ ą 0 for all points. Then the area can be bounded as

ApΣtq ď
1

infΓ0
τ2

ˆ
ż

Γ0

κds´ 2π

˙

. (2.16)

Proof. Using the formula for the area element dA “ τ´ 1
2 g du^ dtwe get

ApΣtq “

ĳ

T ˆS1

τ´ 1
2 g du^ dt “

ż t

0

ż

Γt

τ´ 1
2 dsdt ď

1

infΓ0
τ2

ˆ
ż

Γ0

κds´ 2π

˙

,

where the inequality follows from Proposition 2.1.2 and inequality (2.15).

The estimate (2.16) can be further improved for knotted curves. Provided that the curve Γt

represents an embedding of a non-trivial knot for all t, one can replace 2π in the right-hand-
side of the inequality (2.16) by 4π using the theorem of Milnor-Fáry instead of Fenchel.

2.3.2 Averaged Curvature

To further investigate the existence of the solution and the formation of singularities during
the flow, we shall understand the long term behavior of curvature and torsion. However, the
analysis of these evolution equations is complicated by the second order term B2

spτ´ 1
2 q in

Btκ “ B2
spτ´ 1

2 q ` τ´ 1
2 pκ2 ´ τ2q,
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We avoid this problem by the following trick. Instead of analysing the curvature itself, we
integrate the equations (2.5-2.8) along the curve. This removes the term B2

spτ´ 1
2 q as the

curves are closed and allows us to study the evolution of the averaged curvature xκy given by

xκp¨, tqy :“ ´

ż

Γt

κps, tqds :“
1

LpΓtq

ż

Γt

κps, tqds, (2.17)

whereLpΓtq is the length ofΓt. Since the curvatureκ is non-negative, the averaged curvature
xκy cannot vanish when Γt is a closed curve. Thus tracking whether and when the averaged
curvature approaches zero can give us a bound for maximum time of existence for the flow.

2.3.3 Terminal Time

Using the averaged curvature xκy defined in (2.17), we can bound the terminal time for a
certain subclass of initial curves Γ0 with non-vanishing curvature and torsion.

Proposition 2.3.3 (Proposition 6 from [MB22a]). Let Γ0 be a closed curve such that

τ0 :“ inf
Γ0

τ ą 0 and xκp¨, 0qy ă τ0.

Then the minimal surface generating flow (2.3-2.4) cannot exist beyond the terminal time

t ď
1

2
τ

´ 1
2

0 log

„

1 `
2 xκp¨, 0qy

τ0 ´ xκp¨, 0qy

ȷ

. (2.18)

Proof. The evolution of the averaged curvature can be computed using (2.5-2.8) and reads

d

dt
xκp¨, tqy “ ´ ´

ż

Γt

τ
3
2 ds` xκp¨, tqy ´

ż

Γt

κτ´ 1
2 ds. (2.19)

Let us denote the right-hand side of (2.19) by ξpxκp¨, tqy , tq. Using the torsion assumption,
the equation (2.17) and Proposition 2.1.2 we can bound this expression as

ξpxκp¨, tqy , tq ď ´ inf
Γt

τ
3
2 ` xκp¨, tqy

2
sup
Γt

τ´ 1
2 ď τ

´ 1
2

0

”

xκp¨, tqy
2

´ τ20

ı

. (2.20)

Note that the right-hand-side of (2.20) is only a function of the averaged curvature. We can
thus denote it by ζpxκp¨, tqyq and use it to define an associated initial value problem

9xptq “ ζpxptqq, xp0q “ xκp¨, 0qy .

This ordinary differential equation can be solved analytically and the solution is given by

xptq “ ´τ0
xκp¨, 0qy coshp

?
τ0tq ´ τ0 sinhp

?
τ0tq

xκp¨, 0qy sinhp
?
τ0tq ´ τ0 coshp

?
τ0tq

.

The positive function xptq monotonically decreases until it reaches zero at the terminal time

t “ ´
1

2
τ

´ 1
2

0 log

„

τ0 ´ xκp¨, 0qy

τ0 ` xκp¨, 0qy

ȷ

.
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The difference between xκp¨, tqy and xptq which we denote by yptq satisfies the inequality

9yptq “ ξptq ´ ζpxptqq ď ζpxκp¨, tqyq ´ ζpxptqq “
xκp¨, tqy ` xptq

?
τ0

yptq.

Finally, from the Grönwall lemma and the zero initial condition yp0q “ 0, we obtain

xκp¨, tqy “ yptq ` xptq ď yp0q exp

„
ż t

0

xκp¨, rqy ` xprq
?
τ0

dr

ȷ

` xptq “ xptq.

Since xptq is a supersolution of the averaged curvature xκp¨, tqy, we obtain t ď t.

Remark 2.3.4. The maximum time of existence estimate from Proposition 2.3.3 says that the
flow cannot exist forever for initial curves that satisfy the assumptions. The Proposition 2.3.1
thus cannot be applied to this subclass of initial curves.

The main advantage of the minimal surface generating flow is its simplicity, however, it also
has many drawbacks. The issues that are related to frame topology are further analyzed in
Chapter 3 and the improved version of this flow is proposed in Chapter 4.

2.4 Conclusion

The chapter covers the article [MB22a]which introduces theminimal surface generating flow
and develops methods required for analysis of surfaces traced out by general geometric flows.
The study of trajectory surfaces is a tool for studying the long-term behavior of geometric
flows and in this chapter, we showed how these surfaces can also be used for the study of
specific types of surfaces.

Themain results of the analysis for this specific flow include themonotonicity of torsion, the
evolution of total curvature and other global quantities including an integral of motion, the
use of Maximum principle for constraining the flow in space, and various global estimates
including the upper bound for the generated area and terminal time.

However, the analysis uncovered issues related to the frame topology, which are further ad-
dressed in the article [MB22b] covered in Chapter 3. Moreover, a modified approach based
on curve frame evolution has been developed in preprint [MB23] contained in Chapter 4.
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3
Nondegenerate Homotopy

This chapter covers results obtained in [MB22b]. In contrast to the other chapters of this
thesis, which focus on the analysis of specific geometric motion laws, this chapter aims to
address general topological problems encountered in a broad range of curve flows in space.

Although all closed curves are homeomorphic to S1, the topology of their framing and of
their complement in three-dimensional spaces is considerably more complex. This serves as
the foundation for knot theory—a vibrant field of study with wide-ranging applications be-
yond pure mathematics [Sos04]. While this chapter does not directly employ specific results
from knot theory, it is informed by one of the field’s key insights: the remarkable utility and
efficacy of various topological invariants [Ada04].

To address topological complexities associated with geometric flows, we introduce a novel
topological invariant. While plane curves benefit fromwell-established invariants such as the
turning number, no precise analog exists for space curves. To bridge this gap, we put forth
the concept of the tangent turning signature.

Additionally, recent work has suggested generalized winding numbers for incomplete data
sets [JKS13]. For a comprehensive contemporary treatment of winding numbers for curves
embedded on surfaces, see [FGC23].

3.0 Problem Formulation

Utilizing local geometric quantities from the Frenet frame to describe geometric flows is both
intuitive and useful. However, because the construction of the Frenet frame requires positive
curvature, this approach effectively limits the motion to locally convex space curves. This
chapter aims to expand on and apply concepts from regular and nondegenerate homotopy
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theory to better understand these restrictions. Formore comprehensive details, see [MB22b].

First, we establish the link between a series of geometric evolution equations and findings
from nondegenerate homotopy theory. Then, we introduce a new invariantmetric called the
tangent turning sign to help distinguish between different nondegenerate homotopy classes
of space curves. By doing this, we can anticipate the variety of possible trajectories for evolving
curves based on their starting geometric layout.

3.0.0 Vanishing Curvature

Let us restate the definition for the geometric flowof space curveswith general velocity terms.

Definition 3.0.1 (RestatedDefinition 0.3.2). Wedefine the general geometric flow of the fam-
ily of space curves tΓtutPr0,tq as the following initial-value problem for the parametrization γ:

Btγ “ vTT ` vNN ` vBB in S1 ˆ p0, tq, (3.1)
γ|t“0 “ γ0 in S1, (3.2)

where γ0 is the parametrization for the initial curve Γ0 and t is the terminal time.

The problem with Definition 0.3.2 restated above is the explicit dependence on the Frenet
frame vectorsN and B, which are undefined when the curvature vanishes. There are cases
this issue can be avoided by the trick described in the following remark.

Remark 3.0.2. Let us consider a geometric flow described by vT , vN , and vB which do not
explicitly involve the torsion τ . Let us further assume that for any curve we have

lim
uÑu0

pv2N ` v2Bq “ 0. (3.3)

for all points u0 P S1 where the curvature κ vanishes. In this case, one can modify (3.1) to

Btγ “

#

vTT ` vNN ` vBB, κ ą 0,

vTT, κ “ 0.

Notably, one can apply this modification to the curve shortening flow and the vortex filament
equation, described by Btγ “ κN and Btγ “ κB, respectively. However, there aremany cases,
where this is not possible. We shall discuss such scenarios in the next subsection.

3.0.1 Frenet Frame Dependent Flows

This subsection introduces the notion of Frenet frame dependent geometric flow and defines
a notation for curve spaces with different regularity classes and their quotient spaces induced
by different types of homotopies, like regular and nondegenerate homotopy.

Definition 3.0.3 (Definition 2.2 from [MB22b]). Geometric flow with velocities vT , vN and
vB from Definition 0.3.2 is called Frenet frame dependent flow if it does not satisfy (3.3)
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To streamline the writing in upcoming sections, we introduce a concise notation for curves
with non-vanishing derivatives of various orders.

Definition 3.0.4. Let k be a positive integer andM be a Riemannian manifold. We denote
RkpMq, the space of all closed Ck-class curves with paramatrization γ : S1 Ñ M satisfying

}Bi
uγpuq} ą 0

for all parameters u P S1 and all positive integers i up to the value of k.

Example 3.0.5. In this thesis, we only discuss the spaces RkpMq from Definition 3.0.4 for
small values of the parameter k and EuclideanM. Let us examine these spaces more closely:

1. R1pMq are all regular curves immersed in the ambient spaceM.

2. R2pMq are all locally convex curves inM, e.i. curves of non-vanishing curvature.
Note that forM “ R2, all embedded curves fromR2pR2q are convex.

3. R3pR3q are curves with non-vanishing torsion, either positive or negative everywhere.

For the convenience of the reader, we present the following trivial, but useful, statement.

Observation 3.0.6. Let Γ be a closed, C2-class space curve. Then the curve Γ is locally convex
from the spaceR2pR3q if and only if its tangent indicatrix belongs toR1pS2q.

Proof. Follows immediately from the first Frenet-Serret equation BsT “ κN .

Themain focus of this chapter is the spaceR2pR3qof locally convex curves. Let us explore the
specific type of homotopy, called nondegenerate homotopy, that is crucial for these curves.

Definition 3.0.7. A regular homotopy ht between two locally convex curves fromR2pR3q is
callednondegenerate homotopy if and only if each intermediate curveΓt generated by the homo-
topy ht belongs to the same spaceR2pR3q. The equivalence between two curves fromR2pR3q,
induced by the nondegenerate homotopy is denoted by„, the associated quotientmap by q„ and
the associated quotions space byR1pMq{„.

To avoid confusion, we denote the equivalence relation induced by regular homotopies as«,
the associated quotient map by q« and the associated quotions space byR1pMq{«.

3.1 Tangent Turning Signature

This section contains the definition and analysis of an invariant called tangent turning signa-
ture [MB22b]. Its values categorize locally convex curves into distinct equivalence classes.
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γ(u)

Figure 3.1: Construction of Γp fromDefinition 3.1.1. Adapted from [MB22b].

3.1.0 Topological Preliminaries

In this section, we describe and use the notion of nondegenerate homotopy in the context of
Frenet frame-dependent geometric flows. The motivation comes from the fact that during
these flows, the curve Γt P R2pR3q at any time t and its initial condition Γ0 belong to the
same equivalence class inR2pR3q{„.

Let us thus examine the topology ofR2pR3q{„. In [Fel68], Feldman addressed the cardinal-
ity of this quotient space by studying the Frenet frame of a locally convex curve as a mapping

F : S1 Ñ SOp3q,

and, using properties related to the fundamental group of SOp3q, specifically that

π1pSOp3qq – Z2,

Feldman demonstrated thatR2pR3q{„ is comprised of two equivalence classes.

Although Feldman’s findings clarify the cardinality of equivalence classes, the methodology
for classifying a specific curve withinR2pR3q remains unaddressed. This chapter introduces
a new topological invariant aimed at facilitating such classifications and elucidating the struc-
ture ofR2pR3q{„. Further elaboration on this invariant follows.

3.1.1 Well-definedness

This subsection introduces the notion of tangent turning signature and proves that the defi-
nition is proper. We later prove that this signature is invariant with respect to nondegenerate
homotopy and thus preserved during any Frenet frame dependent geometric flow.

Definition 3.1.1 (Tangent Turning Signature). Let Γ P R2pR3q be a locally convex space
curve and choose a fixed p P S2zRan T . By Γp we denote the projected curve given by

γp :“ Φp ˝ T,

where T is the tangent vector function of the original curve Γ and the second map

Φp : S2ztpu Ñ R2
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is the stereographic projection from p. We define the tangent turning parity TΓ P Z2 as

TΓ ” degpTpq mod 2,

where degpTpq is the degree of the Gauss map for the curve Γp, also referred to as the turning
number of Γp or as the winding number of the tangent vector function Tp : S1 Ñ S1.

Remark 3.1.2. Note that in Definition 3.2 from the original article [MB22b], we used an
alternative but equivalent notion of tangent turning sign with values in t˘1u.

The construction of the tangent turning signature inDefinition 3.1.1 is based on an arbitrary
choice of the point p. This ambiguity is represented in Figure 3.1 and in this diagram:

R2pR3q R1pS2q R1pR2q C0pS1q

Z

R2pR3q{„ Z{2Z

Bs

q„

depends on p

T :

Φp Bs

deg

par

T ;

In this diagram, dotted arrows representmaps that are not uniquely determined. Specifically,
they depend on the choice of the point p. In the following pages, we aim to show that this
ambiguity is resolved by the parity operation and that both the dashed arrows are legitimate.

The first dashed line tagged with : represents the definition of the tangent turning signature
and its well-definedness will be resolved in the next proposition. The second dashed arrow
labeled by ; is resolved later, when we show that the value of the tangent turning signature is
preserved under nondegenerate homotopy and can thus be defined on the quotient space.

Proposition 3.1.3 (Proposition 3.3 from [MB22b]). The tangent turning signature TΓ of a
locally convex curve Γ P R2pR3q does not depend on the choice of p; i.e. TΓ is well-defined.

Proof. To show that the value of TΓ does not depend on the choice of p, let us consider two
different points p1, p2 P S2zRan T . In the trivial case, both points p1 and p2 lie in the same
path-connected componentK Ă S2zRan T . By definition there must exist a regular path
π : r0, 1s Ñ K such that πp0q “ p1 and πp1q “ p2, which defines regular homotopy

ht :“ Φπptq ˝ T

between the projected curves Γp1
and Γp2

. Thus, by theWhitney-Graustein Theorem from
[Whi37], we even have degpTp1q “ degpTp2q and the parity equality is trivially achieved.

In the second case, points p1 and p2 lie in different connected components C1 and C2 of
S2zRan T , respectively. Without loss of generality, assume they share a common border, i.e.

C1 X C2 “ ∅ ‰ BC1 X BC2.
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p1

p2

∂N

C1

C2

Φp1 Φp2

Γ
p1

Φp1
∂N

Φp1
C1

Φp1
C2

Γ

Φp2
C2

Φp2
∂N

S2

Φp1
p2

(a) Differences in topology caused by the change of the singular point of stereographic projection.

≈ ≈ ≈

d �→ d± 2

Γ
p1

Γ
p2

Φp2
∂N

Φp1
∂N

(b) Attaching two identically oriented loops to Γp1 allows us to construct regular homotopy to Γp2 .

Figure 3.2: Ideas from the proof of Proposition 3.1.3. Adapted from [MB22b].

In this configuration there must be a neighbourhoodN Ă S2 such that p1, p2 P N and

N zRan T Ă C1 Y C2. (3.4)

The projectionsΦp1
andΦp2

now indeed lead to different turning numbers. This difference
is caused by the common border of BC1 X BC2, which is projected in two different ways.
However, adding two loops of the same orientation toΓp1 makes it possible to construct the
regular homotopy between the two projectionsΓp1 andΓp2 as suggested in Figure 3.2b. The
additional loops affect the total signed curvature by ˘4π and thus

|degpTp1q ´ degpTp2q| “ 2.

The parity of the turning number thus remains constant, whichmeans that the tangent turn-
ing signature TΓ fromDefinition 3.1.1 is defined properly.

3.2 Ramifications

Having introduced this topological framework for describing locally convex curves, the focus
now shifts back to issues related to geometric flows. In the following, we aim touse the notion
of tangent turning signature to investigate their long-term properties.

3.2.0 Invariance

As suggested before, we aim to prove that TΓ does not change during any Frenet frame de-
pendent flow. The following lemma serves as a basis for the proof of this statement.

Lemma 3.2.1 (Lemma 3.5 from [MB22b]). Let ht be a nondegenerate homotopy and denote
tΓtutPr0,1s the associated family of curves fromR2pR3q. Then for each t P r0, 1s there is a
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neighbourhoodH of t and p P S2 such that the tangent vector map T p¨, tq satisfies

p R T rS1 ˆ pH X r0, 1sqs, (3.5)

where the square brackets denote the image, e.i. the set tT pu, tq : u P S1, t P H X r0, 1su.

Proof. For a fixed t from r0, 1s, the tangent indicatrix T p¨, tq is differentiable and

T rS1 ˆ ttus ‰ S2,

because there are no differentiable, space-filling functions [Mor87]. Since the domain S1 ˆ

ttu is closed, and so is the image of S1 ˆ ttu, there must be p P S2 and ε ą 0 such that

T rS1 ˆ ttus XBε
p “ ∅,

whereBε
p is the ball tx P S2 : }x´ p} ă εu. Since T is continuous and we have

min
S1

}T p¨, tq ´ p} ě ε,

there exists neighbourhoodH of t on which we can lower bound the tangent vector map as

inf
S1ˆpHXr0,1sq

}T ´ p} ě
ε

2
.

Thus we constructed point p P S2 and neighbourhoodH such that (3.5) is satisfied.

Lemma 3.2.1 allows us to prove the invariance of TΓ under nondegenerate homotopy. Show-
ing that T is a meaningful notion even on the space of equivalence classesM{„. This will
complete the commutative diagram by proving that the bottom arrow is well-defined indeed.

R2pR3q R1pS2q R1pR2q C0pS1q

Z

R2pR3q{„ Z{2Z

Bs

q„

Φp Bs

deg

par

T

Theorem3.2.2. The tangent turning signatureTΓ of a locally convex space curveΓ P R2pR3q

is invariant with respect to nondegenerate homotopy and is thus well-defined onR2pR3q{„.

Proof. Let ht be a nondegenerate homotopy and denote the set of curves generated by ht as

tΓtutPr0,1s Ă R2pR3q.

Applying Lemma 3.2.1 for every t yields the following uncountable set of points on S2:

P “ tpt : t P r0, 1su Ă S2
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and the corresponding open cover of r0, 1s made of neighbourhoodsH˚
t “ Ht X r0, 1s:

S “ tH˚
t : t P r0, 1su Ă Ppr0, 1sq,

wherePpMq is the powerset ofM . Since the closed interval r0, 1s is compact, there exists a
finite subcover of S 1 Ă S of r0, 1s of cardinalityN P N. Let us denote its elements by the
strictly increasing sequence of ptiq

N
i“1 Ă r0, 1s with the corresponding set

S 1 “ tH˚
tiu

N
i“1 Ă S.

Furthermore, denote byP 1 “ tpiu
N
i“1 the associated subset ofP such that each ti satisfies

pi P S2zT rS1 ˆH˚
tis.

where T p¨, tq is the tangent vector map of the curve Γt. Let us now construct a strictly in-
creasing sequence pkiq

N 1

i“1 of integers between 1 andN such that the corresponding set

S2 “ tHtki
uN

1

i“1 Ă S 1

is a minimal subcover with respect to inclusion. As the sequence ptki
qN

1

i“1 is increasing, the
intersection in (3.6) is nonempty. The final configuration is depicted in Figure 3.3. Let

si P H˚
tki

XH˚
tki`1

(3.6)

and construct the following regular homotopy between the curves and Γsi
pki

and Γsi`1
pki

:

ĥt :“ Φpki
˝ T p¨, si ` tpsi`1 ´ siqq. (3.7)

Each time interval rsi, si`1s is thus associated with following commutative diagram:

S1 S2

R2

T p¨,si`tpsi`1´siqq

ĥt

Φpki

Note that the homotopy (3.7) is regular due to Observation 3.0.6. Thus, we prove that

TΓsi
“ TΓsi`1

for all nonnegative integers i ă N 1 and as this chain is finite, we have TΓ0
“ TΓ1

.

3.2.1 Geometric Flows

Theorem 3.2.2 immediately leads to the following important statement we aimed towards.

Corollary 3.2.3 (Corollary 3.6 from[MB22b]). The tangent turning signatureTΓ of a locally
convex space curve Γ is preserved under any Frenet frame dependent goemetric flow.
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Figure 3.3: Objects from the proof of Theorem 3.2.2. Adapted from [MB22b].

Theorem 3.2.2 can also be applied in reverse. Specifically, if the tangent turning signature
changes during smooth evolution, a point must exist where the curvature vanishes during
the motion. The following example illustrates this scenario.

Example 3.2.4 (Example 4.2 from [MB22b]). Consider the example adapted from [Gol+10]
with the transformation of a doubly covered circle to a simple circle, parameterized as

γpu, tq :“

»

–

´t cosu` p1 ´ tq cosp2uq

t sinu` p1 ´ tq sinp2uq

´2tp1 ´ tq sinu

fi

fl ,

where u P S1 and t P r0, 1s. Given that the tangent turning signature of Γ0 is r0s and it
changes during the homotopy to r1s, there must be pu, tq P S1 ˆ r0, 1s such that κpu, tq “ 0.

The definition of Frenet frame dependent geometric flow can be further restricted to higher-
order regularity conditions. For example, the Minimal surface generating flow, introduced
in Chapter 2, demands that both curvature and torsion be non-zero at every point along the
curve. In the notation introduced in this chapter, all evolving curves must live in the space
R3pR3q. For more examples of flows demanding non-zero torsion see e.g. [RK02].

The space of third-order nondegenerate homotopy classes has been examined in [Lit71]. In
this situation, four distinct equivalence classes emerge because the orientation of the curve
becomes significant. These four classes are uniquely defined by the combination of the tan-
gent turning parity TΓ and the sign of the torsion τ . It’s worth noting that since the torsion
τ is continuous and never zero, its sign remains consistent at every point along the curve.

3.3 Conclusion

This chapter introduces the tangent turning signature from [MB22b] as a topological in-
variant for understanding locally convex space curves in three-dimensional space. This new
quantity complements existing invariants like the turning number in plane curves.

We further establish a link between nondegenerate homotopy theory and Frenet frame de-
pendent flows. Specifically, the tangent turning signature differentiates nondegenerate ho-
motopy classes of locally convex space curves and thus remains constant during such flows.

Future research can extend the applicability of the tangent turning signature to broader cat-
egories of geometric flows, possibly accommodating manifolds in higher-dimensional spaces
or those embedded in different ambient spaces.
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4
Framed Curvature Flow

This chapter covers results from the most recent work [MB23], which introduces Framed
curvature flow. Curvature-driven geometric flows have been extensively studied for their
many favorable properties and various applications across multiple pure and applied fields.
We aim to take advantage of these benefits by keeping the magnitude of the local velocity
equal to curvature, but at the same time expand and generalise this family of flows by letting
the velocity direction be dictated by an associated time-dependentmoving frame. We refer to
this new class of geometric flows as the framed curvature flow.

Even though our formulation is based on the Frenet frame, the velocity vector is well defined
even in the presence of vanishing curvature, where the normal and binormal vectors are un-
defined. In the language of Definition 2.2 from [MB22b], the framed curvature flow is not a
Frenet frame dependent geometric flow. In this way, it is a modification of the minimal sur-
face generating flow from [MB22a], where both torsion and curvature must remain positive.
Another advantage over [MB22a] is the rich configuration space enabled by the additional
degrees of freedom from themoving velocity direction field. To demonstrate the expressivity
of this approach we derive variations of the flow that trace out various surfaces of interest in
the latter part of this chapter.

In this work, we formulate the coupled dynamics of the moving frame and the curvature-
driven motion, establish local existence and uniqueness for a simplified case of this motion
law, provide useful global estimates for geometric and topological quantities, classify possible
singularities formed during the flow and analyse generated trajectory surfaces.

The Chapter is organised as follows. Section 4.0 introduces the framed curvature flow and
prepares the notation and lemmas required for further analysis of the flow and its trajectory
surfaces. The analysis itself is divided into Sections 4.1 and 4.2. While the former deals with
local behaviour including the local existence and formation of singularities, the latter (Sec-
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tion 4.2) focuses on long-term behaviour by means of length and area estimates and explores
the effects of the moving frame topology. Section 4.3 then showcases interesting examples of
flows from the configuration space of the framed curvature flow framework. Specifically, we
explore flows leading to trajectory surfaces of constant mean and Gaussian curvature.

4.0 Introduction

Consider a family of closed curves tΓtutPr0,tq evolving in the time interval r0, tq, where t ą 0
is the terminal time. For a given time t P r0, tq, the curve Γt is represented by a parametriza-
tion γp¨, tq : S1 Ñ R3, where S1 “ R{2πZ is the unit circle. We use the standard Frenet
frame notation, where T , N , and B denote the tangent, normal, and binormal vectors, re-
spectively. The curvature and torsion, given by the Frenet-Serret formulae, are denoted by
κ and τ , respectively. Furthermore, g :“ }Buγ} is the local rate of parametrization and
ds “ g du is the arclength element.

4.0.0 Theta-Frame

There are many ways to frame a curve [Bis75]. The Frenet frame is in some sense canonical
and easy to work with, but is ill-defined at points of vanishing curvature. We define a time-
dependent moving frame that is derived from the Frenet frame using an angle functional
θ. The normal vector associated with this moving frame will determine the direction of the
velocity vector during the framed curvature flow.

Definition 4.0.1 (θ-frame). For an evolving curve tΓtutPr0,tq and a functional

θ P C1,2pS1 ˆ r0, tq;S1q,

we define a θ-frame of Γt, with θ-normal νθ and θ-binormal βθ , using a one-parameter group
of rotation tRθu, as

„

νθ
βθ

ȷ

“ Rθ

„

N
B

ȷ

, whereRθ :“

„

cos θ sin θ
´ sin θ cos θ

ȷ

P SOp2q.

We denote the moving framed curves as tpΓt, θtqutPr0,tq, where θt :“ θp¨, tq.

Note that βθ “ T ˆ νθ and Frenet-Serret type formulae for the θ-frame read

Bs

»

–

T
νθ
βθ

fi

fl“

»

–

0 κ cos θ ´κ sin θ
´κ cos θ 0 τ ` Bsθ
κ sin θ ´τ ´ Bsθ 0

fi

fl

»

–

T
νθ
βθ

fi

fl“:

»

–

0 ψ1 ´ψ2

´ψ1 0 ψ3

ψ2 ´ψ3 0

fi

fl

»

–

T
νθ
βθ

fi

fl .

In the context of the associated trajectory surface defined in section 4.0.2, ψ1 and ψ2 can be
interpreted as the geodesic and normal curvatures of Γt immersed inΣt, respectively. Here-
after, we refer to ψ3 as the generalised torsion.
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Γ0

N
Γt

(a) Curve shortening flow.

Γ0

B

Γt

(b) Vortex filament equation.

Figure 4.1: Classical examples of geometric motion laws for space curves.

4.0.1 Framed Flow

Definition 4.0.2 (Framed curvature flow). The family of evolving framed curves denoted by
tpΓt, θtqutPr0,tq is a solution to the framed curvature flow if the parametrization γ and the
angle functional θ satisfy the following initial-value problem

Btγ “ κνθ Btθ “ vθ in S1 ˆ r0, tq, (4.1a)
γ|t“0 “ γ0 θ|t“0 “ θ0 in S1, (4.1b)

where γ0 and θ0 are the initial conditions and the θ-velocity

vθ P C1pS1 ˆ r0, tq;Rq

will be specified later in sections 4.1.2, 4.3.0 and 4.3.1.

Example 4.0.3. The framed curvature flow subsumes the following classical geometric flows,
depicted in Figure 4.1, as its special cases:

(a) Curve shortening flow studied e.g. in [AG92; Alt91]:
When θ|t“0 “ 0 and vθ|θ“0 “ 0, (4.1) reduces to Btγ “ κN .

(b) Vortex filament equation studied e.g. in [Ric91]:
When θ|t“0 “ π

2 and vθ|θ“ π
2

“ 0, (4.1) reduces to Btγ “ κB.

Remark 4.0.4. The framed curvature flow (4.1) can also be viewed as a local harmonic combi-
nation of the curve shortening flow and the vortex filament equation from Examples 4.0.3(a)
and 4.0.3(b), respectively. One can also write (4.20) as

Btγ “ cos θ B2
sγ ` sin θ Bsγ ˆ B2

sγ.

This formulation makes clear how the framed curvature flow (4.1) is well-defined even when
the curvature vanishes and the Frenet frame is undefined.

Remark 4.0.5. The set of equations (4.1) represents a case of geometric motion with an addi-
tional quantity, namely θ, whose velocity depends on the geometry, and vice versa. This kind
of coupling has been studied in e.g. [Pad+19], where the the additional quantity represents the
local radius of a bubble vortex tube.
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Figure 4.2: Trajectory surface generated by framed curvature flow.

4.0.2 Trajectory Surfaces

In the same way that a point mass moving in a homogeneous gravitational field generates a
parabola, trajectory surfaces are generated by geometric flows of space curves. As the title
suggests, these surfaces are one of the primary concerns of this chapter.

We argue that there are twomain benefits to examining trajectory surfaces. First, the shape of
the trajectory surface encodes the long-termproperties of the associatedmotion law, and thus
the knowledge of the generated surfaces may help us understand the overall behaviour of the
original geometric flow. Conversely, this framework provides an alternative way to generate
and study surfaceswithprescribed characteristics, potentially enablingnewways to categorize
and understand these surfaces and possibly help tackle various open problems. The formal
meaning of trajectory surface is clarified below.

Definition 4.0.6 (Trajectory surface, [MB22a]). For a given θ-velocity vθ , terminal time t
and initial curve Γ0, we formally define the trajectory surfaceΣt as

Σt :“
Ť

tPr0,tq

Γt,

i.e. Σt is a surface parametrized by γpu, tq for t P r0, tq and u P S1.

Trajectory surfaces have been studied in [HM16] for the special case of inextensible flows,
i.e. geometric flows satisfying Btg “ 0. An important example of such motion law is the
vortex filament equation, mentioned in Example 4.0.3. Surfaces generated by this motion
law, referred to as Hasimoto surfaces, have been previously considered in [AHY12].

Closely related to the trajectory surface is the concept of worldsheet from physics. In the
context of string theory, particles sweep out worldlines and strings sweep out worldsheets in
Minkowski space. The equations of motion are induced from the Nambu-Goto action or
the Polyakov action [Nam95; Got71]. In our case, time is not treated as another dimension
as in general relativity, but rather as another parameter.

In this Chapter, we are specifically interested in trajectory surfaces of constant curvature (see
Section 4.3). In light of this, the following lemma states the formulas for the mean and the
Gaussian curvature of surfaces generated by (4.1).

Lemma 4.0.7. Mean curvatureH and the Gaussian curvatureK of the trajectory surfaceΣt
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obtained from the curve Γt evolving according to (4.1) can be expressed in the form

H “ ´ψ2 ` χ andK “ ´ψ2
3 ´ ψ2χ,

respectively. The auxiliary variable χ used in the formulae above reads

χ :“
vθ
κ

`
κBsψ3 ` 2Bsκψ3

κ3
ψ1 `

B2
sκ´ κBsψ

2
3

κ3
ψ2.

Proof. The first and the second fundamental form I and II ofΣt are given by

I “

„

E F
F G

ȷ

“

„

guu gvu
guv gvv

ȷ

“

„

g2 0
0 κ2

ȷ

, II “

„

L M
M N

ȷ

,

where pgijq is the metric tensor ofΣt, and II containsL “ ´g2ψ2,M “ gψ3κ and

N “ κvθ ` ψ1
κBsψ3 ` 2Bsκψ3

κ
` ψ2

B2
sκ´ κψ2

3

κ
.

Finally, the mean curvatureH and the Gaussian curvatureK are

K “
det II

det I
“

L N ´ M 2

E G ´ F 2
, H “ tr

`

II
`

I´1
˘˘

“
L

E
`

N

G
.

For more details, we refer the reader to Section 2 in [MB22a].

Remark 4.0.8. The principle curvatures of the trajectory surfaceΣt generated during (4.1) are

κ1,2 “ ´ψ2 ` χ˘
a

ζ,

where ζ :“ ψ2
2 ´ ψ2χ` χ2 ` ψ2

3 and χ is the auxiliary variable from Lemma 4.0.7.

Further analysis of trajectory surfaces has been recently carried out in [ZZW22], where the
authors describe the properties of u-curves, i.e. curves given by γpu, ¨q with fixed u P S1.

4.1 Local Analysis

This section focuses on local properties, both in time and parameter space, of the solution
to the framed curvature flow Equation (4.1). In particular, we state the evolution equations
of the local geometric quantities in Section 4.1.0, study the effects of non-trivial tangential
redistribution in Section 4.1.1 and with the help of these preliminary results we establish the
local existence and uniqueness of the solution in Section 4.1.2. The Section 4.1.3 provides
an overview of possible singularities formed during curvature blow-up events.

4.1.0 Evolution Equations

Evolution equations for local geometric quantities, like the rate of parametrisation or curva-
ture, during general geometric flows of space curves have been extensively studied in many
pieces of literature before. See e.g. [Olv08] for a general algebraic approach or [BKŠ22] for
the treatment of geometric motion law similar to (4.1). We nevertheless state these equations
and adopt them for the specific case of framed curvature flow for reader’s convenience.
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Lemma 4.1.1. The arc-length commutator during the framed curvature flow (4.1) with the
angle functional θ is given by

rBt, Bss :“ BtBs ´ BsBt “ κ2 cos θ Bs. (4.2)

Equivalently, Btg “ ´κ2 cos θ g “ ´κψ1g.

Proof. The statement is a special case of Proposition 1 from [BKŠ22].

Lemma 4.1.2. The Frenet frame during the framed curvature flow (4.1) satisfies

Bt

»

–

T
N
B

fi

fl “

»

–

0 ξ1 ´ξ2
´ξ1 0 ξ3
ξ2 ´ξ3 0

fi

fl

»

–

T
N
B

fi

fl ,
ξ1 :“ Bsψ1 ´ τψ2,
ξ2 :“ ´Bsψ2 ´ τψ1,
ξ3 :“ κ´1pψ1Bsτ ` B2

sψ2 ´ τ2q,

while the evolution of θ-normal νθ and θ-binormal βθ can be expressed as

Bt

»

–

T
νθ
βθ

fi

fl “

»

–

0 ζ1 ´ζ2
´ζ1 0 ζ3
ζ2 ´ζ3 0

fi

fl

»

–

T
νθ
βθ

fi

fl ,
ζ1 :“ Bsκ,
ζ2 :“ ´ψ3κ,
ζ3 :“ vθ ` ξ3.

Finally, the curvature κ and torsion τ evolve as

Btκ “ κ2ψ1 ` κ´1
`

B2
sψ1 ´ Bsτψ2 ´ 2τBsψ2 ` τψ1

˘

, (4.3)
Btτ “ κψ1pτ ` ψ3q ` Bs

“

κ´2
`

B2
sψ2 ` 2Bsκψ1ψ3 ´ κψ2ψ3 ` κψ1Bsψ2

˘‰

. (4.4)

Proof. The result can be obtained by substitution to Example 5.7 from [Olv08].

The evolution equations for the θ-frame local quantities ψ1, ψ2 and ψ3 are more involved:

Btψ1 “ Btκ cos θ ´ ψ2vθ,

Btψ2 “ Btκ sin θ ` ψ1vθ,

Btψ3 “ Btτ ` Bsvθ ` κψ1Bsθ.

Here, Btκ and Btτ shall be substituted from (4.3) and (4.4).

4.1.1 Tangential Redistribution

To simplify previous calculations, we ignored the tangential velocity in (4.1) by setting vT :“
xBtγ, T y “ 0. Apart from advection of the θ-frame along the curve, this choice does not af-
fect the geometry of themoving curve. Non-trivial tangential velocity can, however, be useful
for improving numerical stability and for existence analysis. We wish to do the latter in the
following section. Hence we introduce and analyse appropriate tangential term here. Specif-
ically, we use the tangential velocity term developed and used in [HLS94; Kim97;MŠ01] and
modify it for our motion law in the following lemma.
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Lemma 4.1.3. Assume that for all t P r0, tq and all s P R{LpΓtqZ the tangential velocity
vT satisfies the following integro-differential equation

vT ps, tq “ vT,0ptq `

ż s

0

κψ1 ds´
s

LpΓtq

ż

Γt

κψ1 ds, (4.5)

where vT,0ptq “ vT p0, tq is any differentiable function vT,0 P C1pr0, tqq. Then the quantity
LpΓtq

´1g is constant during the framed curvature flow (4.1).

Proof. With Btγ “ κνθ ` vTT , the arc-length commutator from Lemma 4.1.1 is

rBt, Bss “ pκψ1 ´ BsvT qBs

and we have Btg “ p´κψ1 ` BsvT qg. Note that the choice of vT does not affect the time
derivative of lengthLpΓtq, provided the curves Γt are closed. And thus

Bt

ˆ

g

LpΓtq

˙

“
g

LpΓtq2

„

p´κψ1 ` BsvT qLpΓtq `

ż

Γt

κψ1 ds

ȷ

.

Substitution of BsvT from (4.5) yields the vanishing right-hand side.

With a suitable choice of parametrization and the tangential velocity satisfying (4.5) we can
achieve uniform parametrization throught the flow.

Proposition 4.1.4. Assume that the initial curve Γ0 is uniformly parametrized such that
gp0, uq “ LpΓ0q for all u P S1. Let tpΓt, θtqutPr0,tq be a solution to the framed curva-
ture flow with tangential velocity (4.5). Then the curve Γt is parametrized uniformly during
the whole flow, i.e. gpu, tq “ LpΓtq for all t P r0, tq and u P S1.

Proof. Straightforward application of Lemma 4.1.3.

Note that vT in (4.5) is indeedwell defined on the periodic domain as one can easy verify that
vT |s“0 ” vT |s“LpΓtq and BsvT |s“0 ” BsvT |s“LpΓtq.

4.1.2 Local Existence

This section establishes local existence and uniqueness for the framed curvature flow con-
strained by assumptions outlined in Lemma 4.1.5 or Lemma 4.1.6. First, it is important to
note that the right-hand side of (4.1) is well-defined even in the absence of the Frenet frame
(see Remark 4.0.4).

The existence result is achieved by extending the method of abstract theory of analytic semi-
flows in Banach spaces from [DG79; Ang90b; Ang90a; Lun84]. In particular we formu-
late (4.1) in terms of an extended four-dimensional system by treating θ as another dimen-
sion, and follow the existence proof of a similar system of equations from [BKŠ22]. First,
let γ̂ : r0, tq ˆ S1 Ñ R4 denote the extended parametrization γ̂ :“ rγ1, γ2, γ3, θsT . And
consider the extended system of equations

Btγ̂ “ ÂB2
s γ̂ ` fpBsγ̂, γ̂q, (4.6)
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where f P CpR4,4;R4q and the principal part of the right-hand side reads

Â “

«

A 0

βT α

ff

, A “ cos θ I ` sin θ rT sˆ “

»

–

cos θ ´ sin θ T3 sin θ T2
sin θ T3 cos θ ´ sin θ T1

´ sin θ T2 sin θ T1 cos θ

fi

fl ,

where Iij “ δij , prT sˆqij “
ř

k εijkTk for i, j P t1, 2, 3u, and α P R`, β P R3 are fixed
parameters of the framed curvature flow (4.1) with the following θ-velocity

vθ “ αB2
sθ ` κ xβ,Ny ` f4pBsγ̂, γ̂q. (4.7)

We want the system (4.6) to be parabolic. As the spectrum of Â is

σpÂq “ σpAq Y tαu “ tα, cos θ, e˘iθu,

the eigenvalues α and cos θmust be positive. In order to proceed towards the local existence
result, additional constraints have to be laid down to ensure that this property is guaranteed.
In the following lemmas, we provide two different ways to achieve this goal.

Lemma 4.1.5. Let β “ 0 and α ą 0 be fixed parameters of the extended system of equations
(4.6) with f4 ” 0 and assume that θ0 satisfies |θp0, uq| ă π

2 for all u P S1. Then any
solution tpΓt, θtqutPr0,ts to (4.1)will satisfy |θ| ă π

2 everywhere and the extended system (4.6)
will remain parabolic.

Proof. The statement is a consequence of the weak maximum principle for the angle func-
tional θ. Using the notation from Chapter 7.1.4 of [Eva10], we have

Btθ ` Lθ “ 0, (4.8)

where L :“ ´αB2
s “ ´αg´2B2

u ` αg´3BugBu. Thanks to the trivial right-hand side of
(4.8), we can use Theorem 8 from Chapter 7 of [Eva10] and conclude that

|θpu, tq| ď max
uPS1

|θp0, uq| ă
π

2

for all pu, tq P S1 ˆ r0, ts. The last inequality holds due to the assumptions.

Introducing additional assumptions on the curvature allows us to extend the result from
Lemma 4.1.5 for the case of non-trivial β and f4 from (4.7).

Lemma 4.1.6. Assume that |θ0| ă π
2 on S1 and there exist C1, C2 ą 0 such that for all

u P S1 and all t P r0, ts we have κpu, tq ď C1 and f4pu, tq ď C2, where

t :“
1

C1|β| ` C2

ˆ

π

2
´ max

uPS1
|θ0puq|

˙

.

Then |θ| ă π
2 holds everywhere on S1 ˆ r0, ts and (4.6) remains parabolic.
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Proof. The non-difusive term vθ ´ αB2
sθ of the equation (4.7) is bounded as

|vθ ´ αB2
sθ| ď C3,

whereC3 :“ C1|β| ` C2 is a positive constant. Using this value we construct

θ´ :“ min
uPS1

|θ0puq| ´ C3, θ` :“ max
uPS1

|θ0puq| ` C3,

which are subsolution and supersolution to θ (see Lemma 4.1.5). Since |θ˘| stays bellow π
2

at all times t P r0, ts, we concur that |θ| is bounded by π
2 as well.

To prepare for the existence proof, further notation needs to be introduced. For any ε P

p0, 1q and any k P t0, 12 , 1u we define the following family of Banach spaces of Hölder con-
tinuous functions

Ek :“ h2k`εpS1q ˆ h2k`εpS1q ˆ h2k`εpS1q ˆ h2k`εpS1q,

where h2k`εpS1q is a little Hölder space (see Section 4.1 in [BKŠ22]). With the aid of the
previous lemmas and the appropriate tangential velocity term described in Section 4.1.1, we
can now state the local existence result.

Proposition 4.1.7. Consider (4.1) with additional tangential velocity satisfying (4.5) from
in section 4.1.1 and assume that

(a) the initial extended parametrization γ̂|t“0 belongs to E1,

(b) the initial parametrization γ0 satisfies }Buγ0} “ LpΓ0q on S1,

(c) f is C2 smooth and globally Lipschitz continuous,

(d) the assumptions of Lemma 4.1.5 or Lemma 4.1.6 are satisfied.

Then there exists t ą 0 and a unique family of framed curves tpΓt, θtqutPr0,tq satisfying (4.6)
with tangential velocity (4.5) such that γ̂ P Cpr0, tq; E1q X C1pr0, tq; E0q.

Proof. We extend the proof of Theorem 4.1 from [BKŠ22] to the parametrization with the
framing angle γ̂. We rewrite the extended system (4.6) as an abstract parabolic equation:

Btγ̂ ` F pγ̂q “ 0 (4.9)

for γ̂ P E1, whereF is operator mapping from E1 to E0. Using Lemma 2.5 from [Ang90b]
as in the proof of Proposition 4 from [BKŠ22], the Frechet derivativeF 1 of the operatorF
from (4.9) belongs to the maximum regularity classMpE1, E0q. The solution γ̂ exists in

Cpr0, ts; E1q X C1pr0, ts; E0q

for any t P p0, tq due to Theorem 2.7 from [Ang90b].

Formore details, we refer the reader to [BKŠ22] or to the original literature [DG79; Ang90b;
Ang90a; Lun84] of the abstract theory of analytic semi-flows in Banach spaces.
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Proposition 4.1.8. Let the assumptions ofProposition4.1.7 holdand suppose that themaximal
time of existence t is finite, then

lim sup
tÑt

max
uPS1

κpu, tq “ `8 _ lim sup
tÑt

max
uPS1

|B2
sθpu, tq| “ `8.

Proof. For contradiction, assume that the maximal time of the existence t is finite and that
both κ and |B2

sθ| are bounded. Since the assumptions of Proposition 4.1.7 are satisfied, the
solution γ̂ belongs to Cpr0, ts; E1q X C1pr0, ts; E0q for any t P p0, tq. Moreover, the term
B2
s γ̂ is bounded by the assumptions because

}B2
s γ̂}2 “ }B2

sγ}2 ` |B2
sθ|2 “ κ2 ` |B2

sθ|2.

Thus, by themaximumregularity, the extended solution γ̂ belongs to the spaceCpr0, ts; E1qX

C1pr0, ts; E0q and can be continued beyond r0, tq, which contradicts the maximal time as-
sumption. More details can be retrieved from the last part of Theorem 4.1 from [BKŠ22].

The behaviour of Γt during the curvature blow-up event described in Proposition 4.1.8 is
detailed in the next section.

4.1.3 Formation of Singularities

The expressive power of the framed curvature flow framework enables unusual singularity
types to occur during the curvature blow-up events. The study of singularities has played an
important role in the understanding of behaviour of different geometric flows and will also
prove significant in the later parts of this work.

Singularities of geometric flows have been studied in e.g. [Kha15; Cor16; Lit23; And02;
IY03] or [AG92], where the motion of planar curve has been extended beyond curvature
singularities via a higher dimensional flowof an associated space curve. The existence of flows
past various singularities has also been addressed by othermeans such as by using the concept
of viscosity solutions for the level-set formulation of curvature-driven flows in [OS88; GP],
topological surgeries [Per03b] or by analysis of self-similar shrinkers in [Veg15].

In [Alt91], Altschuler showed that the blow-up limits of space curves under the curve short-
ening flow are planar. The situation for framed curvature flow is more complicated. The
following definition clarifies the meaning of different types of singularities which may occur
during the evolution driven by (4.1).

Definition 4.1.9 (Singularity typologies). The event at which the curvature κ approaches in-
finity at time t and LpΓtq Ñ 0 as t approaches t (the curve Γt shrinks to a point) during the
framed curvature flow (4.1) is called:

1. Flat singularity if and only if θt Ñ 0 as t approaches t.
(θ-frame uniformly approaches the Frenet frame).

2. Cone singularity if and only if θt Ñ Θ P p´π
2 ,

π
2 qzt0u as t approaches t.

3. Pinch singularity if and only if θt Ñ Θ P t˘π
2 u as t approaches t.
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Figure 4.3: Depiction of singularity typologies fromDefinition 4.1.9 for circular initial con-
dition Γ0 and uniform theta angle. Upper indices 1 to 4 denote the flat, cone, pinch and
infinite pinch scenario, respectively. The dashed line represents the trajectory of the vortex
filament equation for reference.

Furthermore, when the trajectory surface Σt is unbounded, the case 3. is called infinite pinch
singularity.

The flat singularity occurs in the classical example of curve shortening flow. For the case of
simple planar curves, this singularity is guarantied by the Grayson-Gage-Hamilton theorem
[GH86; Gra87]. Embedded space curves under the curve shortening flow do not necessar-
ily shrink to a point, however the Grayson-Gage-Hamilton theorem can be extended in the
case of simple spherical curves [MB20]. Other singularity types from Definition 4.1.9 are
illustrated in the next set of analytical examples with simple evolution of circle.

Example 4.1.10 (Cone singularity). LetΓ0 be a circle with radius ρ0 ą 0 and consider vθ ”

0with θ0 ” ϕ P p0, π2 q. This setup leads to the famous solution for shrinking circle with radius
ρptq “ pρ20 ´ 2t cosϕq

1
2 which vanishes at the terminal time t “ p2 cosϕq´1ρ20. However,

due to the non-trivial binormal velocity term xBtγ,By “ κ sinϕ ‰ 0, the singularity occurs
at a point shifted in the binormal direction from the center of the initial circle by a distance

z “

´

ρ0 ´
`

ρ20 ´ 2t cosϕ
˘

1
2

¯

tanϕ “ ρ0 tanϕ.

This leads to a conical trajectory surface with a cone singularity.

Example 4.1.11 (Pinch singularity). Again, consider a circle Γ0 with radius ρ0 ą 0 and
θ0 ” ϕ P p0, π2 q. To illustrate the pinch singularity, let

Btθ “
tan θ ´ 2κ

?
t´ t

2pt´ tq
,

where t “ psinϕq´2ρ0. This θ-velocity is constructed in such a way that ρ “ sin θ
?
t´ t and

Btz “ κ sin θ “
?
t´ t. Even tough the time derivative of the shift distance z diverges as t

approaches t, its definite integral is finite:

lim
tÑt

zptq “ lim
tÑt

ż t

0

1
a

t´ t
dt “ lim

tÑt

”

´2
a

t´ t
ıt“t

t“0
“ 2

a

t.

The pitch singularity thus develops at a point located at a 2
?
t distance form the center of the

original circle.
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Example 4.1.12 (Infinite pinch singularity). With the same setup of initial conditions as in
the previous examples, we now consider Btθ “ 2ρ´2

0 . This velocity leads to θptq “ 2tρ´2
0 and

ρptq “ ρ0p1 ´ sinp2ρ´1
0 tqq

1
2 . Thus the circle shrinks to a point at the time t “ 1

4πρ
2
0 and

Btz “ ρ´1 sinp2ρ´1
0 tqq “ ρ´1

0 p1 ´ sinp2ρ´1
0 tqqq´ 1

2 sinp2ρ´1
0 tqq. (4.10)

Unlike in the Example 4.1.11, the integral of (4.10) diverges and thus the infinite pinch singu-
larity is formed.

All singularity typologies from Examples 4.1.10, 4.1.11 and 4.1.12 are depicted in Figure 4.3.

Remark 4.1.13. Let us recall the definition of type-I and type-II singularity, studied in e.g.
[Kha15; Cor16; Lit23]. This classification of curvature blow-up events is based on the compar-
ison of the curvature growth near twith the function pt´ tq

1
2 . Formally, a blow-up singularity

is classified as type-I if

lim
tÑt

Mtpt´ tq :“ lim
tÑt

rmax
uPS1

κ2pu, tqspt´ tq (4.11)

is bounded, and as type-II otherwise. In terms of this classical notation, the singularities from
Example 4.1.10 and 4.1.11 are type-I:

‚ In Example 4.1.10, we haveMt “ ρ´2ptq “ pρ20 ´ 2t cosϕq´1 “ 2 cosϕpt´ tq´1,
where the terminal time is t “ p2 cosϕq´1ρ20. Thus

lim
tÑt

Mtpt´ tq “ 2 cosϕ ă `8.

‚ Similarly in Example 4.1.11, the radius reads ρ “ pt´ tq
1
2 sin θ and therefore

lim
tÑt

Mtpt´ tq “ lim
tÑt

max
uPS1

psin θtpuqq´2 “ 1 ă `8.

Whereas the infinite pinch singularity from Example 4.1.12 is type-II:

‚ Since in Example 4.1.12, the radius is ρptq “ ρ0p1 ´ sinp2ρ´1
0 tqq´ 1

2 , the termMt

behaves as pt´ tq2 near t and the limit (4.11) diverges.

Further analysis of these connections is left for a future work.

The study of singularity formation is an extensive field of research, and this section offers only
a brief exploration of potential blow-up scenarios within the context of the recently intro-
duced framed curvature flow. Future work can involve for instance the analysis of singularity
profiles leading to the self-shrinking Abresch–Langer curves [AL86].

4.2 Global Analysis

This section studies the global aspects of the solutions to the framed curvature flow, focusing
on properties of global geometric quantities and their long term behaviour. First, several
global estimates for the length and the generated surface area are provided in section 4.2.0,
the evolution of the largest projected algebraic area is studied in section 4.2.1 and selected
useful facts related to the topology of the θ-framing are provided in section 4.2.2.
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4.2.0 Global Estimates

We aim to derive useful estimates for global geometric quantities such as the length and the
generated area. To this end, we first prepare evolution equations for these quantities, then
state assumptions upon which we base the bounds in the later parts of this section.

Lemma 4.2.1. The evolution of the length LpΓtq of the curve Γt and the total areaApΣtq of
the trajectory surfaceΣt during (4.1) is

d

dt
LpΓtq “ ´

ż

Γt

κψ1 ds,
d

dt
A pΣtq “

ż

Γt

κds. (4.12)

Proof. The first part of (4.12) is obtained from (4.2), the second one follows from

d

dt

ż

Σt

dA “
d

dt

ż t

0

ż

Γt̄

κdsdt̄,

where dA is obtained from E “ g2,F “ 0 and G “ v2N ` γ2 “ κ2 as

dA “
a

E G ´ F 2 du^ dt “ gκ du^ dt.

Particular details of the computations are in the proof of Lemma 4.0.7.

Without any assumptions on the initial curve, we can bound the generated area from below
by a linear function of time.

Corollary 4.2.2. The Fenchel Theorem impliesA pΣtq ě 2πt for all t P r0, tq. Furthermore,
when the curve is knotted on r0, tq, we getA pΣtq ě 4πt by theMilnor-Fáry Theorem [Fár49].

Lemma 4.2.3. The evolution of the total torsion τ and the total generalized torsion ψ3 of Γt

during the framed curvature flow (4.1) is

d

dt

ż

Γt

τ ds “
d

dt

ż

Γt

ψ3 ds “

ż

Γt

ψ1ψ3κ` ψ2Bsκds. (4.13)

Proof. Since Γt is closed, both integrals are equal, i.e.
ż

Γt

ψ3 ds “

ż

Γt

τ ds`

ż

Γt

Bsθ ds “

ż

Γt

τ ds.

The right-hand side of (4.13) is obtained from (4.2) and (4.4).

The estimates below are based a subset of the following assumptions:

I. There exists a fixed ε ą 0 such that |θ| ď π
2 ´ ε. In this case we define a constant

KI. :“ cos
`

π
2 ´ ε

˘

ą 0which will bound cos θ from below.

II. The curvature κ is uniformly bounded from bellow by a constant KII. ą 0, i.e.
κpu, tq ě KII. for all t P r0, tq and u P S1.
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Note that assumption I. is also needed for the existence proof in section 4.1.2 and follows
from the assumptions given in Lemma 4.1.5, or alternatively Lemma 4.1.6. Assumption II.,
on the other hand, can only be enforced up to a time t away from the singularity t, where the
curvature blows up.

Proposition 4.2.4. Let Γt be a solution to (4.1). If assumption I. holds, then

LpΓtq ď
`

L2pΓ0q ´ 8π2KI.t
˘

1
2 (4.14)

and thus the terminal time can be bounded from above as

t ď
`

8π2KI.

˘´1
L2pΓ0q. (4.15)

Moreover, assuming the curve is knotted on r0, tq, the 8π2 term in both (4.14) and (4.15) esti-
mates can be replaced by 32π2 as in Corollary 4.2.2.

Proof. From assumption I. and the first part of Lemma 4.2.1 we have

d

dt
LpΓtq “ ´

ż

Γt

κ2 cos θ ds ď ´KI.

ż

Γt

κ2 ds.

Using the Fenchel Theorem and Cauchy-Schwarz inequality, we obtain

d

dt
LpΓtq ď ´

KI.

LpΓtq

ˆ
ż

Γt

κds

˙2

ď ´
4π2KI.

LpΓtq
.

The result follows from the ODE comparison theorem.

Proposition 4.2.5. Let Γt be a solution to (4.1) and letΣt denote its associated trajectory sur-
face. If assumptions I. and II. are satisfied, then we get

ApΣtq ď
KII.

12π2KI.

ˆ

L3pΓ0q ´
`

L2pΓ0q ´ 8π2KI.t
˘

3
2

˙

.

Furthermore, as t is bounded by (4.15), we get a global bound

ApΣtq ď
KII.L

3pΓ0q

12π2KI.
.

Proof. Assuming I. and II. and using Lemma 4.2.1 and Proposition 4.2.4 yields

d

dt
ApΣtq ď KII.LpΓtq ď KII.

`

L2pΓ0q ´ 8π2KI.t
˘

1
2 .

Integrating the inequality yields the result.
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4.2.1 Projected Area

In this section, we consider the following quantity

AppΓtq :“
1

2

ż

Γt

γ ˆ Bsγ ds “
1

2

ż

S1

γ ˆ Buγ du (4.16)

and use it to extend our area estimates forΣt. The geometric interpretation of this quantity
is revealed in following lemma.

Lemma 4.2.6. For a given curve Γt, the quantityAppΓtq defined in (4.16) is the largest alge-
braic area enclosed by any orthogonal projection of Γt.

Proof. For any unit normal vector ν P S2, let πpνq be the projection operator onto tνuK,
i.e. πpνq “ I ´ ν ¨ νT , and let πpνqΓt denote the projected planar curve paramerized by
πpνqγ. Then

ApπpνqΓtq :“

›

›

›

›

ż

S1

πpνqγ ˆ Bupπpνqγqdu

›

›

›

›

“

›

›

›

›

AppΓtq ´

ż

S1

xγ, νy ν ˆ Buγ du´

ż

S1

xBuγ, νy γ ˆ ν du

›

›

›

›

“

›

›

›

›

AppΓtq ` ν ˆ

ż

S1

xBuγ, νy γ ´ xγ, νy Buγ du

›

›

›

›

,

where ApΓq denotes the algebraic area enclosed by a planar curve Γ. Double application of
the triple vector product formula yields

ApπpνqΓtq “ }AppΓtq ` ν ˆ pν ˆAppΓtqq}

“
›

›AppΓtq ` xAppΓtq, νy ν ´ }ν}2AppΓtq
›

›

“ }xAppΓtq, νy ν} “ |xAppΓtq, νy| .

Thus, due to the Cauchy-Schwarz inequality, we have:

1. ApπpνqΓtq ď AppΓtq for all ν in S2,

2. ApπpAppΓtq
´1AppΓtqqΓtq “ AppΓtq whenAppΓtq ą 0.

The conjunction of 1. and 2. proves the statement.

Lemma 4.2.7. The time derivative ofAppΓtq during (4.1) is

d

dt
AppΓtq “ ´

ż

Γt

κβθ ds. (4.17)

Proof. The derivation of this integral quantity is simplified using the fact that
ż

Γt

γ ˆ Bsγ ds “

ż

S1

γ ˆ Buγ du,
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where ds “ g du and, formally, Bu “ gBs. Thus we have

d

dt
AppΓtq “

1

2

ż

S1

Btγ ˆ Buγ ` γ ˆ BuBtγ du “
1

2

ż

Γt

κνθ ˆ T ` γ ˆ Bspκνθqds,

where νθ ˆ T “ ´βθ and both parts of the integral yield the same value as
ż

Γt

γ ˆ Bspκνθqds “

ż

Γt

Bspγ ˆ κνθq ´ T ˆ κνθ ds “ ´

ż

Γt

κβθ ds.

Adding these integrals leads to (4.17).

Proposition 4.2.8. Let tpΓt, θtqutPr0,tq develop a flat singularity at time t, then

ApΣtq ě max
tPr0,tq

}AppΓtq}.

Proof. Let x P R3 be the point to which the curve Γt shrinks towards as the time t ap-
proaches t. SinceΣtYtxu spans the initial curveΓ0, its areamust be at least that of aminimal
spanning surface, which has locally larger area than the projection. Formally, let dA1 denote
the area element of πpνqΓt, then

E 1 “ }Buπpνqγ}2 ď ~πpνq~2}Buγ}2 “ g2,

G 1 “ }Btπpνqγ}2 ď ~πpνq~2}Btγ}2 “ κ2.

With ~ ¨ ~ being the spectral norm, ~πpνq~ “ maxpσpπpνqqq “ 1 and thus

dA1 “
a

E 1G 1 ´ F 12 du^ dt ď
?

E 1G 1 du^ dt ď gκ du^ dt “ dA.

Note that the algebraic area of the projection is even smaller as the overlapping parts can
annihilate.

Proposition 4.2.9. Let Γt be a solution to (4.1) and assume I. and II., then

d

dt
}AppΓtq} ď 2KI.KII.LpΓtq.

Proof. Applying the assumptions and Cauchy-Schwarz inequality yields

d

dt
}AppΓtq} “

B

AppΓtq

}AppΓtq}
,
d

dt
AppΓtq

F

ď

›

›

›

›

d

dt
AppΓtq

›

›

›

›

ď 2KI.KII.

›

›

›

›

ż

Γt

βθ ds

›

›

›

›

.

The statement then follows from the fact thatRθ is unitary.

Since the area of any surface enclosed by the curve Γt is smaller than }AppΓtq} (see proof
of Proposition 4.2.8), the above proposition provides an upper bound on the growth of the
minimal spanning surface area.

Remark 4.2.10. Note that for θ ” π
2 , both the length LpΓtq and the projected areaAppΓtq

remain constant during (4.1), as shown in [AH65]. On the other hand, for θ ” 0 the motion
is anL2-gradient flow for the length functional (see [Kim08]).
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4.2.2 Frame Topology

Let us consider the topology of themoving θ-frame and its possible ramifications on the long-
termbehaviour of the framed curvature flow. Wedo so by analysing the time evolution of two
geometric quantities, named writhe and twist, which are closely connected to the topology
of the moving frame. Writhe of an embedded curve is an averaged sum of all signed crossings
over the space of all orthogonal projections, but can also be written using Gauss formula as

WrpΓtq “
1

4π

ĳ

ΓtˆΓt

xγps, tq ´ γps1, tq, T ps, tq ˆ T ps1, tqy

}γps, tq ´ γps1, tq}3
ds^ ds1.

The second important geometric quantity describing the frame topology is the total twist of
the θ-frame, which reads

Tθ
wpΓtq “

1

2π

ż

Γt

xνθ ˆ Bsνθ, T y ds

“
1

2π

ż

Γt

´ψ1xνθ ˆ T, T y ` ψ3xνθ ˆ βθ, T y ds

“
1

2π

ż

Γt

ψ3 ds “ TF
wpΓtq `

1

2π
degpθtq,

where degpθtq is the topological degree of θt : S1 Ñ S1 andTF
wpΓtq is the normalized total

twist (i.e. total twist assiciated with the Frenet frame):

TF
wpΓtq “

1

2π

ż

Γt

τ ds.

The writhe and twist are connected via the Călugăreanu–White–Fuller Theorem [Căl61;
Whi69] which states that

S‚
LkpΓtq “ WrpΓtq ` T‚

wpΓtq, (4.18)

where ‚ represents either F or θ and SθLkpΓtq, SFLkpΓtq are the self-linking numbers for the
Frenet frame and the θ-frame, respectively. With the help of this theorem, we can describe
the evolution of writhe for embedded curves.

Proposition 4.2.11. Let tpΓt, θtqutPr0,tq be a solution to (4.1). Consider t P r0, tq such that
Γt ãÑ R3 (i.e. Γt is embedded) and κpu, tq ą 0 for all u P S1. Then

d

dt
WrpΓtq “ ´

1

2π

ż

Γt

ψ1ψ3κ` ψ2Bsκds. (4.19)

Proof. The assumptions imply that the time derivative of SFLkpΓtq exists and is equal to 0.
Thus, we may differentiate (4.18) to obtain

d

dt
WrpΓtq “

d

dt

“

SFLkpΓtq ´ TF
wpΓtq

‰

“ ´
1

2π

d

dt

ż

Γt

τ ds.

The formula (4.19) then follows from Lemma 4.2.3.
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Remark 4.2.12. Note that since vθ is continuous, the degree of θ cannot change during the flow
and the difference SθLkpΓtq ´ SFLkpΓtq is a constant integer.

The following proposition provides a necessary topological condition needed to close the
trajectory surface in the sense of ending the flow in a flat singularity described in section 4.1.3.

Proposition 4.2.13. Assume that tpΓt, θtqutPr0,tq develops a flat singularity and pΓ0, θ0q is
not a Seifert framing. Then there must exist t P r0, tq such that either κpu, tq “ 0 at some
point u P S1 or Γt is not embedded.

Proof. The Seifert framing must have zero self-linking number, see [SCR21].

4.3 Generated Surfaces

By adjusting the definition of the θ-velocity, the framed curvature flow can be formulated
such that its associated trajectory surface has various interesting properties. These specific for-
mulations are explored in this section. We first consider trajectory surfaces of constant mean
curvature in section 4.3.0 and then constant Gauss curvature in section 4.3.1. Other special
surfaces, such as surfaces of a constant ratio of principle curvatures, proposed in [Liu+22],
fall outside the scope of this manuscript and may be the subject of future work.

4.3.0 ConstantMean Curvature

In this section, we consider the use of framed curvature flow as a means of solving the Björ-
ling problem forminimal surfaces and its generalisation for non-minimal surfaces of constant
mean curvature (see [BD10]).

Proposition 4.3.1. For a fixed constantH P R, consider the framed curvature flow (4.1)with
the θ-velocity given by

vθ “ κH ´ pκBsψ3 ` 2Bsκψ3qκ´2ψ1 ` pκ3 ` κψ2
3 ´ B2

sκqκ´2ψ2. (4.20)

The trajectory surface Σt generated by this flow has a constant mean curvature equal to the
prescribed valueH .

Proof. Substitution of (4.20) to Lemma 4.0.7.

The following results are all related to the Flux theorem introduced in [Kus87; Kus91].

Proposition 4.3.2 (FluxTheorem). Let tpΓt, θtqutPr0,tq be a solution to the framed curvature
flow with θ-velocity defined in (4.20). Then for any a P R3

H

ż

BΣt

xγ ˆ T, ayds`

ż

BΣt

xνθ, ayds “ 0, (4.21)

where BΣt “ Γ0 Y Γt is the boundary of the associated trajectory surfaceΣt.
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Proof. Multiple proofs can be found in e.g. [Lóp13], where the unit conormal vector from
Theorem 5.1.1. is equivalent to the θ-normal νθ .

Combining the Flux theoremwith the evolution equations for the projected areaAp leads to
a simple formula for the derivative of total θ-normal.

Corollary 4.3.3. For any solution tpΓt, θtqutPr0,tq to (4.1) with vθ from (4.20) we have

d

dt

ż

Γt

νθ ds “ 2H

ż

Γt

κβθ ds.

Proof. The boundary BΣt consists of Γt and Γ0, but the former is static. Differentiation of
the Flux theorem (4.21) thus leads to

H
d

dt

ż

Γt

γ ˆ T ds`
d

dt

ż

Γt

νθ ds “ 0. (4.22)

The result is then obtained by rearranging (4.22) and using Lemma 4.2.7.

The Flux theorem enables the following two necessary conditions for flat singularity forma-
tion during the flow that generates CMC surfaces.

Corollary 4.3.4. When tpΓt, θtqutPr0,tq develops a flat singularity at the terminal time t,
the surfaceΣt only has one non-trivial boundary Γt, and thus

AppΓ0q “ ´
1

H

ż

Γ0

νθ ds

Corollary 4.3.5. Assume that tpΓt, θtqutPr0,tq solves the framed curvature flow with vθ from
(4.20) and develops a flat singularity. Then

LpΓ0q ě 2H}AppΓ0q}.

In particular, if Γ0 is simple planar curve enclosing areaA, then

LpΓ0q ě 2HA.

Proof. For any unit vector a P S2, we have 2H|xAppΓ0q, ay| ď LpΓ0q from Corollary
5.1.7 of [Lóp13].

Important subclass of surfaceswith constantmeancurvature are theminimal surfaces [MP12;
Pér16] characterised byH “ 0. In nature, minimal surfaces emerge in the context of soap
films [Gol+10; Gol+14], cell membranes [LL14], the crystallographic structure of zeolites
[AHB85; And+88; Scr76] and as the apparent horizon of a black hole [HI01].

For the case of minimal surfaces, many of the previous results derived from the Flux theo-
rem significantly simplify. Moreover, when the flow develops a flat singularity, the associated
trajectory surface effectively represents a valid solution to the Plateau problem with a single
boundary curve Γ0.
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Corollary 4.3.6 (Corollary 5.1.5 from [Lóp13]). Forminimal surfaces withH “ 0, we have
even stricter conditions, namely for all a P R3

ż

BΣt

xνθ, ay ds “ 0,

ż

BΣt

xνθ, γ ˆ ay ds “ 0.

We end this section with an analysis of specific examples of solutions to (4.20) with simple
initial configurations. First example illustrates the configuration that leads to the simplest
minimal surface, which is a subset of the flat plane.

Example 4.3.7. Let the initial curve Γ0 be a closed convex planar curve and θ0 ” 0. Then
the framed curvature flow with θ-velocity from (4.20) and H “ 0 is equivalent to the curve
shortening flow and generates a flat surface Σt equivalent to the convex hull of Γ0 in a finite
time t when the Γt shrinks down to a round point (see [GH86; Gra87]).

More analytical examples can be obtained by considering configurations with helical and
cylindrical symmetries.

Example 4.3.8 (Helical symmetry). For a constant θ0 consider evolving helix curve

γ0puq :“

»

–

ϱ0 cosu
ϱ0 sinu
wu

fi

fl , γpu, tq :“

»

–

ϱptq cospu` υptqq

ϱptq sinpu` υptqq

wu` ωptq

fi

fl ,

where ρ0 andw are positive constants and ρ, υ, ω are functions of time t. Since κ “ ϱg´2 and
τ “ wg´2, the problem (4.20) reduces to the following system

d

dt

»

—

—

–

θ
ϱ
ω
υ

fi

ffi

ffi

fl

“
1

g3

»

—

—

–

g sin θ ` ρgH
´gρ cos θ
ρ2 sin θ

´w sin θ

fi

ffi

ffi

fl

,

»

—

—

–

θ
ϱ
ω
υ

fi

ffi

ffi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

t“0

“

»

—

—

–

θ0
ϱ0
0
0

fi

ffi

ffi

fl

, (4.23)

where g2 “ ϱ2 ` w2. Similar helicoidal surfaces of constant mean curvature were studied in
e.g. [HK20].

Considering cylindrically symmetrical configurations leads to the family ofDelaneu surfaces,
first classified in [Del41].

Example 4.3.9 (Cylindrical symmetry). Settingw “ 0 reduces the system (4.23) to

d

dt

»

–

θ
ϱ
ω

fi

fl “
1

ϱ2

»

–

sin θ ` ϱH
´ϱ cos θ
ϱ sin θ

fi

fl ,

»

–

θ
ϱ
ω

fi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

t“0

“

»

–

θ0
ϱ0
0

fi

fl .

Nodoid surface generated by the flow from Example 4.3.9 is depicted in Figure B.5.
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4.3.1 Constant Gaussian Curvature

Unlike themean curvature flow or theminimal surface generating flow [MB22a], the framed
curvature flow can be used for generating developable surfaces or surfaces of any other pre-
scribed Gaussian curvature.

Proposition 4.3.10. For a fixed constantK P R, consider a framed curvature flow (4.1)with
the θ-velocity given by

vθ “ ´ κψ´1
2 K ´ pκBsψ3 ` 2Bsκψ3qκ´2ψ1 (4.24a)

´ κψ´1
2 ψ2

3 ´ pB2
sκ´ κψ2

3qκ´2ψ2. (4.24b)

The trajectory surfaceΣt generated by this flow has a constant Gaussian curvature equal to the
prescribed valueK .

Proof. Substitution of (4.24) to Lemma 4.0.7.

Important examples of surfaces with constant Gaussian curvature are developable surfaces.
For this specific case, the Gauss-Bonnet formula significantly simplifies and can be used to
uncover an unexpected integral of motion.

Proposition 4.3.11. Let tpΓt, θtqutPr0,tq be a solution to the framed curvature flow with θ-
velocity defined in (4.24) withK set to 0. Then the integral of ψ1 over the curve Γt at any time
t P r0, tq is preserved.

Proof. The Gauss-Bonnet theorem states that
ż

Σt

K dA`

ż

BΣt

κg ds “ 2πχpΣtq, (4.25)

where dA “ κg du ^ dt (see proof of Proposition 4.2.8), κg is the geodesic curvature at
the boundary BΣt “ Γ0 Y Γt and χpΣtq “ 0 is the Euler characteristic of an annulus.
Differentiation of (4.25) and subsequent substitution yields

d

dt

ż

Γt

ψ1 ds “ ´

ż

Γt

κK ds,

where ψ1 is the geodesic curvature of Γt onΣt and the integrand on the right hand side is 0
by the assumption thatK “ 0.

As in the previous section, we construct analytical examples using configurations with helical
and cylindrical symmetries.

Example 4.3.12 (Helical symmetry). For a constant θ0 consider evolving helix curve

γ0puq :“

»

–

ϱ0 cosu
ϱ0 sinu
wu

fi

fl , γpu, tq :“

»

–

ϱptq cospu` υptqq

ϱptq sinpu` υptqq

wu` ωptq

fi

fl ,
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where ρ0 andw are positive constants and ρ, υ, ω are functions of time t. Since κ “ ϱg´2 and
τ “ wg´2, the problem (4.24) reduces to the following system

d

dt

»

—

—

–

θ
ϱ
ω
υ

fi

ffi

ffi

fl

“
1

g3

»

—

—

–

Kg4`w2 cos2 θ
g sin θ

´gρ cos θ
ρ2 sin θ

´w sin θ

fi

ffi

ffi

fl

,

»

—

—

–

θ
ϱ
ω
υ

fi

ffi

ffi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

t“0

“

»

—

—

–

θ0
ϱ0
0
0

fi

ffi

ffi

fl

, (4.26)

where g2 “ ϱ2 ` w2. This solution leads to a family of helical trajectory surfaces of constant
Gaussian curvature.

Example 4.3.13 (Cylindrical symmetry). Settingw “ 0 reduces the system (4.26) to

d

dt

»

–

θ
ϱ
ω

fi

fl “
1

ϱ2

»

–

psin θq´1Kg3

´ϱ cos θ
ϱ sin θ

fi

fl ,

»

–

θ
ϱ
ω

fi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

t“0

“

»

–

θ0
ϱ0
0

fi

fl .

The examples above can be used to generate surfaces similar to the one depicted in Figure B.5.

4.4 Conclusion

Inconclusion, the framedcurvatureflow is apromising generalisationof the classical curvature-
driven geometric flows of space curves and its configuration space contains exciting motion
laws with possible use cases in the analysis of surfaces with prescribed curvature.

However, more analysis is required, especially with respect to local existence for larger sub-
space of the possible settings of the θ-velocity. Other future work may entail the study of
motion laws generating other types of surfaces such as the surfaces with constant principle
curvature ratio [Liu+22] or surfaces minimising energies other than the surface area, such as
the Willmore energy or various repulsive energies.

Another possible direction of future work is to generalize the concept of framed curvature
flow to higher dimensional space withmore than one codimension and look for possible con-
nections between the generated trajectory varieties and the Open book decomposition.

Further intuition andknowledge canbeobtainedbymeansof apropernumerical analysis and
experiments with different settings of the θ-velocity. Finally, the simple examples of different
types of singularities involving curvature blow-up, that were presented in Subsection 4.1.3,
ought to be extended and studied in much more detail.
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5
Conclusions

This thesis explores the geometry and topology of curves evolving in three-dimensional Eu-
clidean space. Geometric flows, notably in this lower-dimensional setting, are intrinsic to the
understanding ofmanifold natural phenomena and engineering applications. While a signif-
icant part of this research field focused on higher-dimensional or intrinsic flows, this work
aims to fill the gaps in our understanding of evolving space curves by extending the toolkit
available for their study.

The thesis consolidates and presents key findings drawn from the following research articles:

[MKB19] J. Minarčík, M. Kimura, and M. Beneš. “Comparing motion of curves and hy-
persurfaces in Rm”. In: Discrete and Continuous Dynamical Systems Series B 24
(2019), pp. 4815–4826.

[MB20] J.Minarčík andM. Beneš. “Long-term behavior of curve shortening flow inR3”.
In: SIAM Journal onMathematical Analysis 52 (2020), pp. 1221–1231.

[MB22a] J. Minarčík and M. Beneš. “Minimal surface generating flow for space curves of
non vanishing torsion”. In: Discrete and Continuous Dynamical Systems - Series
B 27 (2022), pp. 6605–6617.

[MB22b] J. Minarčík and M. Beneš. “Nondegenerate Homotopy and Geometric Flows”.
In: Homology, Homotopy and Applications 24 (2022), pp. 255–264.

[MB23] J. Minarčík and M. Beneš. “Trajectory Surfaces of Framed Curvature Flow”.
Preprint 2023.
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Main Results

The thesis presents several new notions and contains many individual results, detailed in the
published articles listed above. All of them fall into the category of evolving space curves but
the key contributions can be grouped into the following subthemes:

• Analysis of higher codimension curve shortening flow: We presented several new
andnon-trivial results related to the long-termbehaviourof spherical and convex curves,
including a generalizedAvoidance principle and a newComparison theorem for evolv-
ing space curves and hypersurfaces.

• Trajectory surfaces: We introduced and studied surfaces traced out by general geo-
metric flows, which is useful for understanding the global properties of specific surface
classes or curve flows. By introducing theMinimal surface generating flowwe showed
how specific surfaces can be created via simple local motion laws.

• Framed curvature flow: To overcome the limitations of the Minimal surface gener-
ating flow, we proposed a motion law for framed curves. After establishing local exis-
tence and several global estimates, we showed how this flow can be used for generating
surfaces of constant mean or Gaussian curvature.

• Tangent turning signature: When dealing with flow in higher codimension, one en-
counters several topological problems related to the ambiguity of the normal vector or
knotted configurations. The thesis introduced a new invariant, called tangent turning
signature, which helps us capture some of these complexities.

FutureWork

The analytical tools introduced in this thesis lay the groundwork for numerous future re-
search directions. These opportunities for further studies are not only mathematically rich
but also bear potential for various applications in science and engineering:

• Higher-dimensional cases: The current study has been largely confined to three-
dimensional Euclidean space. However, many of the findings may be extended into
higher dimensions or more general ambient spaces as in [Smo12].

• Application-specificmodels:Motion laws and tools introduced in thisworkmayfind
applications in fields like robotics, computational geometry, or fluid dynamics.

• Computational methods: The development of efficient numerical methods for solv-
ing these motion laws, especially, those involving the approximation of torsion.

• Topological changes: Changes in topology are often linked to critical scientific phe-
nomena. While reconnectionor annihilation through self-contact iswell-studied, spon-
taneous branching during growth still lacks proper mathematical treatment.

Each of these potential studies could leverage the analytical and topological tools developed in
this thesis, contributing further to the understanding of geometric flows of low-dimensional
manifolds in various dimensions.
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A
Appendix: Evolution of Filament Networks

This chapter addresses the topic of moving networks of curves, proven useful in diverse ap-
plications such as grain boundary evolution and engineered curved grid structures. Taking
a step further, we introduce models of filament networks with adaptable topologies. By in-
corporating ideas from discrete differential geometry, our approach potentially expands the
scope of useful applications in this field.

We present a formal definition of filament networks and introduce a novel energy functional
based on material distribution systems. Utilizing discrete differential geometry methods, we
derive conditions for optimizing these networks. These models are not only grounded in
theory but also have practical implications, particularly in the optimization of tunnel systems
and simulations of natural branching structures. The contents of this appendix constitute a
yet unpublished work, offering a potential starting point for future research directions.

A.0 Introduction

This section introduces themain ideas andnotation aswell as provides a brief literature review
of fields related to network optimisation problems and its practical applications.

A.0.0 Motivation

Movingnetworks of curves havebeen studied inboth inR2 [NPP20;NPP19; BW95;Man+18]
and R3 [GMP20]. The applications of these models include modelling of grain boundary
evolution [Bal+99] and engineering curved grid structures [Bae+17; Sag+19].

We aim to advance this field by introducing models of filament networks with adaptable
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FigureA.1: Diagramdepicting branchingnetworknotation (left) and explanationof the root
system energy functional (right).

topologies. These models have potential applications ranging from optimizing tunnel sys-
tems to simulating various natural structures, such as root and vascular networks or Lichten-
berg figures [NPW84]. This section describes a simplifiedmodel of branching tree structures
optimizing energy inspired by material transport systems of fractal character found both in
natural and industrial settings [Bet+07].

A.0.1 Formulation

Throughout this text we define filament network as an embedding of a directed graph G “

pV, Eqwith a collection of pointsV “ tviui fromRn as vertices and edgesE Ă VˆVˆtΓu.
Where the curveΓ associated with vertex tuple pv, wq P V2 is given by γ : r0, 1s Ñ Rn such
that γp0q “ v and γp1q “ w.

This example is inspiredbybiological systemswhichdistribute energy ormaterials via branch-
ing filament networks of binary tree structure. We aim to optimize the shape of this topolog-
ical profile with respect to energy inspired by biology - defined later in this section. In this
case, the filament network G has to satisfy the following set of conditions (see Figure A.1).

1. Γk is a curve parametrized by γk : r0, 1s Ñ Rn for all k P N,

2. γkp0q “ vl with l “
X

k
2

\

and γkp1q “ vk for all k P N,
3. for every non-negative integer k, and l greater than k, ifLpΓkq “ k and there exists a

positive integer n such that
X

l
2n

\

“ k, then the lengthLpΓlq must be equal to 0.

We use the following nomenclature: Tip Node refers to a vertex of degree 1, Body Node refers
to a vertex of degree 2, and finally, Junction Node refers to a vertex with degree 3. Note that
vertices of degree higher than 3 are not considered.

A.0.2 Energy Functional

This section introduces an energy functional inspired bymaterial distribution systems found
in nature and engineering. The α-length is defined for α P p0, 1s as

LαpGq “

`8
ÿ

i“1

αi
2i`1´1
ÿ

j“2i

LpΓiq (A.1)
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and the β-volume for β P p0, 1s is given by

V βpGq “ M

»

–

`8
ď

i“1

2i`1´1
ď

j“2i

`

Γj ‘Bβi

˘

X Ω

fi

fl , (A.2)

where M is the Lebesque measure, ‘ denotes the dilation operator and Br is a ball with
radius r, i.e. Γj ‘Bβi “ tx : distpx,Γjq ă βiu. Consider the energy functional

EpGq “ ϕpLαpGq, V βpGqq, (A.3)

where ϕ : p0, Lα
maxq ˆ R` Ñ R` for some fixedLα

max ą 0, must satisfy

1. ϕpx, yq Ñ `8 as x Ñ Lα
max for all y inR`,

2. ϕpx, ¨q is decreasing onR` for all x in p0, Lα
maxq,

3. ϕp¨, yq is increasing on p0, Lα
maxq for all y inR`.

The condition (1) represents the finiteness of available resources and the remaining mono-
tonicity conditions (2) and (3) enforce the expansion profitability and the opposing structural
cost, respectively.

We use the following form of ϕ for its simplicity.

ϕpLα, V βq “ λpLα
max ´ Lαq´1 ´ V β , (A.4)

where the constant λ ą 0 determines the profit-cost ratio.

A.1 Discretization

This section presents a discrete approach to the energy gradient flow of networks. We first
derive the gradient in a discrete setting, thereby bypassing the need for solving continuous
partial differential equations. Next, we explore the implications of this approach on deter-
mining optimal junction angles in networks. Finally, we introduce a branching condition
that enables the addition of new branches to the network based on energy considerations.

A.1.0 Discrete Energy Gradient

Instead of defining the gradient flow analytically and then solving the corresponding partial
differential equations numerically, we derive the gradient in the discrete setting. This ap-
proach related to discrete differential geometry is often used in computation-heavy domains
such as computed graphics (see e.g. [CW17; YSC21]).

The gradient of the discrete energy functional at a pointX is given by

∇E “ BLαϕ∇Lα ` BV βϕ∇V β (A.5)

“ BLαϕ
ÿ

X

∇XL
α ` BV βϕ

ÿ

X

∇XV
β , (A.6)
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where BLαϕ “ λpLα
max ´ Lαq´2 and BV βϕ “ ´1. The point-wise gradients∇XL

α and
∇XV

β depend on the node type ofX .

• Tip node with previous pointXp:

∇XL
α “ αi∇X}X ´Xp}, (A.7)

∇XV
β “ 2βi∇X}X ´Xp}. (A.8)

Note that the factor 2 in (A.8) reflects that βi is the radius, not the diameter.

• Body node with neighbouring pointsXp andXn:

∇XL
α “ αi∇X p}Xn ´X} ` }X ´Xp}q , (A.9)

∇XV
β « 0. (A.10)

The approximation (A.10) can be improved, however, it has a negligible effect on the
numerical simulation.

• Junction node with neighbouring pointsXp,Xl andXr:

∇XL
α “ αi∇X}Xp ´X} ` αi`1∇X p}Xr ´X} ` }X ´Xl}q , (A.11)

∇XV
β « 2βi∇X}Xp ´X} ` 2βi`1∇X p}Xr ´X} ` }X ´Xl}q . (A.12)

In (A.12), we assume that βi is smaller than the discretization step.

Since the gradient∇X}X ´ Y } is pointing in the directionX ´ Y and it is a unit vector,
we can substitute∇X}X ´ Y } “ }X ´ Y }´1pX ´ Y q to all of the above equations.

A.1.1 Optimal Junction Angle

The classically studied length or elastic energy minimizing gradient flow of networks leads to
Steiner treeswith triple junctions satisfying theHerring condition (see e.g. [BW95;Man+18]).
In our case, the optimal angles depend on the energy hyperparameters and the current α-
length of G.
Consider a discrete triple junction nodeX with neighbouring pointsXp,Xl andXr and let
s‹ :“ }X ´X‹}´1pX ´X‹q for ‹ P tp, l, ru. Then

∇XE “

„

λ

pLα
max ´ Lαq2

αi ´ 2βi

ȷ

sp `

„

λ

pLα
max ´ Lαq2

αi`1 ´ 2βi`1

ȷ

psl ` srq.

We assume that the neighbouring discrete points are symmetrical in the sense that }Xp ´

Xl} “ }Xp ´Xr}. Let Gopt denoted the network for which

∇XE
`

Gopt
˘

“ 0.

The symmetry assumption and the condition forGopt imply that sl `sr is parallel to sp and

sl ` sr “ xsl ` sr, spysp “ 2xsl,r, spysp,
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where sl,r represents sl or sr . The energy gradient condition for the optimal graph Gopt is

0 “

„

λ

pLα
max ´ Lαq2

αi ´ 2βi ` 2xsl,r, spy

ˆ

λ

pLα
max ´ Lαq2

αi`1 ´ 2βi`1

˙ȷ

sp.

The optimal junction angle can be written as θopt “ 2 arccos p´xsl,r, spyq, where

xsl,r, spy “ ´
1

2

λαi ´ 2pLα
max ´ Lαq2βi

λαi`1 ´ 2pLα
max ´ Lαq2βi`1

. (A.13)

The asymptotic optimal junction angle can be evaluated as the following limit

lim
LαÑLα

max

θopt “ 2 arccos

ˆ

´ lim
LαÑLα

max

xsl,r, spy

˙

“ 2 arccos

ˆ

1

2α

˙

.

Thus the parameter α should be at least 1
2 to obtain geometrically feasible critical networks.

A.1.2 Branching Condition

In case of favorable energy outcome, new branches are added to the tree. This topological
change is triggered by the branching condition. The condition is derived from (A.13) by
ensuring that xsl,r, spy P p´1, 0q which leads to

ˆ

α

β

˙i

ą
2

λ

1 ´ 2β

1 ´ 2α
pLα

max ´ Lαq
2
.

Assuming that α ă β, we can express the branching condition at level i as

i ă

„

log

ˆ

α

β

˙ȷ´1 „

log

ˆ

2

λ

˙

` log

ˆ

1 ´ 2β

1 ´ 2α

˙

` 2 log pLα
max ´ Lαq

ȷ

.

This gives us a lowerbound for themaximumbranchdegreepossible for a given configuration
of parameters and the current α-length.

A.2 Conclusion

The chapter outlines the evolution and optimization of filament networks, which are de-
scribed as moving networks of curves. It proposes an approach incorporating discrete dif-
ferential geometry and a novel energy functional inspired by biological systems. This energy
functional accounts for both the limitations in available resources and the interplay between
structural cost and expansion profitability.

By using a discrete approach to compute energy gradients, this framework enables the han-
dling of branching topological changes which can lead to interesting and useful dynamics.
The work thus serves as an unpublished foundation for future research in this field.
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B
Appendix: Computational Experiments

This appendix presents a collection of selected computational experiments that complement
the main text and provide validation to some of the most important theoretical results. It
touches on topics from all previous Chapters and provides additional resources.

We first describe our discretization approach andmethods used for approximation of impor-
tant quantities in Section B.0. The numerical integration scheme and supporting algorithms
are provided in Section B.1. Finally, the computational results are presented in Section B.2.

B.0 Discrete Geometry

This section serves as a technical foundation, outlining thenotation and approximationmeth-
odsused in the simulationsof this appendix. We initiate thediscussionwith a general overview
of the numerical approach and basic notation.

In this work, geometric flows of curves in R3 are numerically treated in a way similar to
[KBŠ17]. Wediscretize spatial derivatives bymeans of the osculating circles and then solve the
resulting system of time-dependent ODE’s by means of the Runge-Kutta-Merson scheme.

A discrete curve Γ̃ is a finite set of nodes tγ̃iu
N´1
i“0 connected by linear segments, where

N P N is the number of nodes. In order to simplify further notation for closed curves,
we set γ̃´1 :“ γ̃N´1 and γ̃N :“ γ̃0. The vectorKN can be approximated by means of the
geometrical approach based on osculating circles. The approximate values ofK andN at the
node γ̃i are denoted by K̃i and Ñi, respectively.
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Figure B.1: Visualization of the geometric quantities defined in the osculating plane.

B.0.0 Discrete Curvature

This subsection describes the curvature approximation scheme from [MKB19] used in the
subsequent simulations. This approach uses a discrete osculating circle given by three subse-
quent points along the discretized curve.

Consider a particular node γ̃i P Γ̃, where 0 ď i ă N . We define

u :“ γ̃i ´ γ̃i´1, γ̃i´ 1
2
:“ 1

2 pγ̃i´1 ` γ̃iq,

v :“ γ̃i`1 ´ γ̃i, γ̃i` 1
2
:“ 1

2 pγ̃i ` γ̃i`1q,

as shown in Figure B.1. In order to approximate the curvatureK , we find the center S of
the circle c defined by the points γ̃i´1, γ̃i and γ̃i`1. Since c is the circumscribed circle of the
triangle with the vertices γ̃i´1, γ̃i and γ̃i`1 and lies in the osculating plane, the point S has
to satisfy the following conditions:

S ´ γ̃i P tu, vuspan, (B.1)
S ´ γ̃i´ 1

2
K u, (B.2)

S ´ γ̃i` 1
2

K v. (B.3)

First condition (B.1) implies the existence of t1, t2 P R, such thatS “ γ̃i ` t1u` t2v. This
allows us to rewrite (B.2) and (B.3) as

xS ´ γ̃i´ 1
2
, uy “ t1}u}2 ` t2 xu, vy ´ xγ̃i´ 1

2
´ γ̃i, uy “ 0,

xS ´ γ̃i` 1
2
, vy “ t1 xu, vy ` t2}v}2 ´ xγ̃i` 1

2
´ γ̃i, vy “ 0.

The parameters t1 and t2 can be obtained by solving the following linear system:

A ¨

„

t1
t2

ȷ

:“

„

}u}2 xu, vy

xu, vy }v}2

ȷ

¨

„

t1
t2

ȷ

“

„

xγ̃i´ 1
2

´ γ̃i, uy

xγ̃i` 1
2

´ γ̃i, vy

ȷ

“

„

´ 1
2}u}2

1
2}v}2

ȷ

. (B.4)

When }u}2}v}2 “ xu, vy
2 and the determinant detA vanishes, the points γ̃i´1, γ̃i and

γ̃i`1 are collinear and we set K̃i :“ 0. Otherwise, the system (B.4) has a unique solution

t1 “ ´
}v}2p}u}2 ` xu, vyq

2 detA
, t2 “

}u}2p}v}2 ` xu, vyq

2 detA
.

115



Γε

Γ

Γ
−ε

γ
i+1γ

i

γ
i−1

B
i−1

B
i

B
i+1

d
i

−ε

d
i

d
i

ε

d
i+1
ε

d
i+1

d
i+1
−ε

Figure B.2: Discretization scheme for torsion.

The discrete curvature K̃i is then calculated from the radius r of the osculation circle c as

K̃i :“
1
r “ }γ̃i ´ S}´1 “ }t1u` t2v}´1.

The principal normal vectorN is approximated by the expression

Ñi :“ K̃ipS ´ γ̃iq.

The geometrical setting is illustrated in Figure B.1.

B.0.1 Discrete Torsion

There are various approximation techniques for curvature, ranging from classic finite differ-
ences to approaches based on discrete differential geometry [CW17]. Even though there are
some techniques to discretize torsion [Bac; Bou00], the literature on this subject is relatively
sparse. To this end, we present a novel approximation method for discrete torsion, inspired
by the curvature approximations detailed in [CW17].

Consider a family of curves Γε derived from a given space curve Γ by ε-expansion in the bi-
normal direction. Each curve Γε is then prescribed by the following parametric function:

γε :“ γ ` εB.

Using the Frenet-Serret equations and the Taylor’s theorem we get

}Buγε} “ }gT ´ εgτN} “
a

1 ` ε2τ2}Buγ} “ p1 ` 1
2ε

2τ2q}Buγ} ` Opε4q,

where g :“ }Buγ}. Thus the length of the expanded curve Γε satisfies

d

dε

ˆ
ż

Γε

ds

˙ˇ

ˇ

ˇ

ˇ

ε“0

“ 0
d2

dε2

ˆ
ż

Γε

ds

˙ˇ

ˇ

ˇ

ˇ

ε“0

“

ż

Γ

τ2 ds,

and τ2 can be expressed as the following limit

τ2 “
B2
ε}Buγε}

}Buγ}

ˇ

ˇ

ˇ

ˇ

ε“0

“ lim
εÑ0

}Buγε} ´ 2}Buγ} ` }Buγ´ε}

ε2}Buγ}
“: lim

εÑ0
τ2ε .
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In the following, we define discrete torsion from three consecutive points on a discrete curve
denoted by γi´1, γi and γi`1. The idea is to discretize τ2ε instead of τ2 and find the limit of
the discretized value as ε approaches zero. The process is summarized as follows:

τ iε τ i

τε τ

εÑ0

εÑ0

discretization

To aid with the definition of τ2ε , we introduce the following discrete variables:

Bi :“
pγi`1 ´ γiq ˆ pγi ´ γi´1q

}pγi`1 ´ γiq ˆ pγi ´ γi´1q}
, diε :“ }pγi ` εBiq ´ pγi´1 ` εBi´1q},

liε :“ di`1
ε ` diε, pτ iεq2 :“

liε ´ 2li0 ` li´ε

ε2li0
.

After algebraic manipulation, the square of diε can be rewritten using di0 in the form

pdiεq2 “ pdi0q2 ` 2εxγi ´ γi´1, Bi ´Bi´1y ` ε2}Bi ´Bi´1}2

“ pdi0q2 ` 2εxγi ´ γi´1,Hi ˆ pγi ´ γi´1qy ` ε2}Hi ˆ pγi ´ γi´1}2

“ pdi0q2
“

1 ` pε sinαi}Hi}q2
‰

,

where αi is the angle betweenHi and γi ´ γi´i, and the termHi is given by

Hi :“
γi`1 ´ γi

}pγi`1 ´ γiq ˆ pγi ´ γi´1q}
`

γi´1 ´ γi´2

}pγi ´ γi´1q ˆ pγi´1 ´ γi´2q}
.

Using the Taylor theorem, we can estimate diε and liε for ε close to 0 as

diε “ di0
a

1 ` pε sinαi}Hi}q2 “ di0
“

1 ` 1
2ε

2psinαi}Hi}q2
‰

` Opε4q,

liε “ li0 ` 1
2ε

2
“

di`1
0 psinαi`1}Hi`1}q2 ` di0psinαi}Hi}q2

‰

` Opε4q.

Finally, we define the approximation of pτ iq2 at the point γi as

pτ iq2 :“ lim
εÑ0

pτ iεq2 “
di`1
0 psinαi`1}Hi`1q2 ` di0psinαi}Hiq2

di`1
0 ` di0

.

Note that this approximation does not provide us with the sign of the torsion, but it is not
required for the minimal surface generating flow due to Proposition 2.1.2.

B.1 Numerical Integration

In this section, we focus on numerical integrationmethod for solving time-dependentODEs
in our geometrical setting. We describe the semi-discrete scheme as a foundational step, fol-
lowed by an application of the Runge-Kutta-Merson scheme for time integration. The sec-
tion also addresses the order of convergence and the challenges posed by topological changes.
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B.1.0 Semi-discrete Scheme

For numerical integration of the initial value problem

dγ̃i
dt

“ K̃2
i pSi ´ γ̃iq, (B.5)

γ̃i|t“0 “ γ0

ˆ

2πi

N

˙

, (B.6)

we use the 4th order accurate Runge-Kutta-Merson method with an automatic time step
adjustment as in [Chr70].

Denoting γ̃ “ pγ̃0, . . . , γ̃N´1qT and Fipγ̃q “ K̃iÑi, system (B.5-B.6) reduces to

γ̃1
iptq “ Fipγ̃ptqq.

Wedenote the time step τ ą 0 and the time level t̃. The next time level is given by the formula

γ̃pt̃` τq “ γ̃pt̃q ` 1
6 pk1 ` 4k4 ` k5q,

where kj “ pkj,0, . . . , kj,N´1qT can be computed using the following set of formulas

k1,i “ Fipγ̃pt̃qq,

k2,i “ Fipγ̃pt̃q ` τ
3k1q,

k3,i “ Fipγ̃pt̃q ` τ
6 pk1 ` k2qq,

k4,i “ Fipγ̃pt̃q ` τ
8 pk1 ` 3k3qq,

k5,i “ Fipγ̃pt̃q ` τ
2 pk1 ´ 3k3 ` 4k4qq.

The time step τ is updated at each iteration as in the page 246 of [Hol+86].

τnew “

ˆ

δ

ε

˙
1
5

ωτ, where ε “ max
0ďiăN

1

3

›

›

›

›

1

5
k1,i ´

9

10
k3,i `

4

5
k4,i ´

1

10
k5,i

›

›

›

›

.

The control parameters ω and δ must satisfy 0 ă ω ă 1 and δ ą 0.

B.1.1 Order of Convergence

We assume thatΓ0 is embedded in a unit sphere centered at the origins. The deviation of the
discretized curve from the shrinking sphere radius is characterized by

E8pNq :“ max
t̃

max
0ďiăN

ˇ

ˇ

ˇ
}γ̃ipt̃q} ´

a

1 ´ 2t̃
ˇ

ˇ

ˇ
,

EppNq :“ max
t̃

˜

1

Lpt̃q

N´1
ÿ

i“0

li`1pt̃q ` lipt̃q

2

ˇ

ˇ

ˇ
}γ̃ipt̃q} ´

a

1 ´ 2t̃
ˇ

ˇ

ˇ

p
¸

1
p

,

where p P N,Lpt̃q :“
řN´1

i“0 lipt̃q and lipt̃q :“
›

›γ̃ipt̃q ´ γ̃i´1pt̃q
›

›.
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The Experimental Order of Convergence (EOC) used in [RM89; Dzi94] is calculated as

EOCppN1, N2q :“ ´
logpEppN2qq ´ logpEppN1qq

logN2 ´ logN1

where p P N or p “ 8. The following numerical simulations were performed by using
the semi-discrete scheme (B.5-B.6) with the control parameters δ “ 10´5 and ω “ 0.8 as
suggested in [Hol+86], page 246.

B.2 Computational Experiments

In the final section of this appendix, we present a series of computational experiments to sup-
port and validate our theoretical results. These experiments span topics from all chapters of
this thesis, from spherical verification and minimal surfaces to more complex configurations
like filament networks and coupled dynamics. Each experiment aims to empirically substan-
tiate the analytical and numerical methods discussed earlier.

B.2.0 Spherical Verification

The first couple of examples are related to the curve shortening flow of space curves, studied
in Chapter 1. Let us restate Definition 1.0.1 for reader’s convenience:

Definition B.2.1 (Curve shortening flow). Let tΓtutPr0,tq with t ą 0 be a family of evolving
curves. The curve shortening flow is defined as the following initial-value problem:

Btγ “ κN on S1 ˆ r0, tq,

γ|t“0 “ γ0 in S1,

where γ0 P C2pS1;R3q is the parametrization of the initial curve Γ0.

We include two computational examples serving both as verification of the numerical scheme
from Section B.1 and testing of the properties of moving spherical curves. According to
Corollary 1.1.5, spherical curves under the curvature flow should remain embedded in a
shrinking sphere. Both examples follow the curve shortening flow redefined above.

Example B.2.2. The initial curve Γ0 for the first example is given by the parametrization

γ
`

u`π
2π , 0

˘

“

»

–

cosp6uq sinu
sinp6uq sin |u|

´ cosu

fi

fl , u P r´π, πs.

The results of the numerical simulation are presented in Table B.1 and Figure B.3.

Example B.2.3. The initial curve Γ0 for the second example is given by the parametrization

γ
`

u
2π , 0

˘

“
1

a

1 ` p5 cosp10uqq2

»

–

cosu
sinu

5 cosp10uq

fi

fl , u P r0, 2πs.

The results of the numerical simulation are presented in Table B.2 and Figure B.4.
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Table B.1: Results of the numerical computation from Example B.2.2. The error measure-
ments were taken during time interval r0, 0.45s.

N E8pNq EOC8 E1pNq EOC1 E2pNq EOC2

100 1.0205¨10´2

2.0283 9.3770¨10´3

2.0540 6.4629¨10´3

2.0794200 2.5018¨10´3

1.9372 2.2581¨10´3

1.9449 1.5292¨10´3

1.9758400 6.5329¨10´4

1.9746 5.8649¨10´4

2.0234 3.8876¨10´4

1.9924800 1.6623¨10´4

1.7062 1.4426¨10´4

2.0071 9.7702¨10´5

2.01831600 5.0943¨10´5 3.5888¨10´5 2.4118¨10´5

(a) t̃ “ 0 (b) t̃ “ 0.15 (c) t̃ “ 0.35 (d) t̃ “ 0.45

Figure B.3: Results of the numerical simulation from Example B.2.2. The discretized curve
is visualized at four different time levels along with the corresponding sphere.

B.2.1 Minimal Surfaces

We move to the Minimal surface generating flow introduced in Chapter 2. Let us restate
Definition 2.0.6 of the motion law for easier reference:

Definition B.2.4 (Minimal surface generating flow). Let Γ0 be a closed space curve with pos-
itive curvature and torsion. We say that a family of curves tΓtutPr0,tq is evolving according to
the minimal surface generating flow if its parametrization γ satisfies the initial value problem:

Btγ “ τ´ 1
2N in S1 ˆ p0, tq, (B.7)

γ|t“0 “ γ0 in S1, (B.8)

where γ0 is parametrization of the initial curve Γ0 and τ is the torsion of the curve.

WeaccompanyExample 2.2.1whichwas given analyticaly by a result obtainedbymeansof the
numerical approximation. The evolution for local quantities g, κ and τ , given in Equations
(2.5-2.8), havebeennumerically solvedby the explicit Euler first-ordermethodusing thefinite
difference approximations along the parametric interval.

The results presented in Figure B.10 show the evolution of initial curve with parametrization

γ0puq “ rcosupr1 ` r2 cospmuqq, sinupr1 ` r2 cospmuqq, r2 sinusT (B.9)
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Table B.2: Results of the numerical computation from Example B.2.3. The error measure-
ments were taken during time interval r0, 0.45s.

N E8pNq EOC8 E1pNq EOC1 E2pNq EOC2

400 1.1538¨10´1

1.9639 1.1538¨10´1

1.9640 1.0340¨10´1

2.2232800 2.9575¨10´2

2.0276 2.9574¨10´2

2.0280 2.2146¨10´2

2.09751200 1.2998¨10´2

2.0218 1.2996¨10´2

2.0222 9.4608¨10´3

2.05471600 7.2659¨10´3

2.0281 7.2636¨10´3

2.0269 5.2386¨10´3

2.04592000 4.6211¨10´3 4.6209¨10´3 3.3186¨10´3

(a) t̃ “ 0 (b) t̃ “ 0.01 (c) t̃ “ 0.05 (d) t̃ “ 0.2

Figure B.4: Results of the numerical simulation from Example B.2.3. The discretized curve
is visualized at four different time levels along with the corresponding sphere.

for all u P S1. This specific experiment used parametersm “ 10, r1 “ 1 and r2 “ 1
10 .

The initial condition for the values of g, κ and τ was analytically derived from (B.9). The
experimentwas runwith time step∆t “ 10´6 and the curvewas discretizedwith103 points.

The validity of the numerical results was partially verified by several sanity checks and the nu-
merical scheme was partially validated using the known solution described in Example 2.2.1.
During the experiment, the integral

?
τ deviated from its initial value by less than 2 ¨ 10´14,

which is in accordance to Corollary 2.2.2. The length was monotonically decreasing (see
Proposition 2.2.3) while the torsion τ was increasing at every fixed u P S1 (see Proposition
2.1.2). Even though, the assumptions for Proposition 2.3.3 were not satisfied by the initial
configuration, the averaged curvature κave eventually became lower than the minimum of
torsion τmin. The curvature vanished in finite time as shown in Proposition 2.3.3.

B.2.2 Tangent Turning Signature

This sectionpresentsmultiple examples to demonstrate the computation of the tangent turn-
ing signature, as introduced in Chapter 3. To facilitate easier referencing, we restate Defini-
tion 3.1.1 where this invariant was first introduced.

Definition B.2.5 (Tangent turning signature). Let Γ P R2pR3q be a locally convex space
curve and choose a fixed p P S2zRan T . By Γp we denote the projected curve given by

γp :“ Φp ˝ T,
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where T is the tangent vector function of the original curve Γ and the second map

Φp : S2ztpu Ñ R2

is the stereographic projection from p. We define the tangent turning parity TΓ P Z2 as

TΓ ” degpTpq mod 2,

where degpTpq is the degree of the Gauss map for the curve Γp, also referred to as the turning
number of Γp or as the winding number of the tangent vector function Tp : S1 Ñ S1.

The following example shows the construction of the projected curveΓp and the correspond-
ing value of the tangent turning signature TΓ for several specific curves fromM.

Example B.2.6. Consider the following set of parametric functions of locally convex curves:

γ1puq “
1

2

»

–

1 ` cosp2uq

sinp2uq

2 sinu

fi

fl , γ2puq “
1

6

»

–

cosp2uqp5 ` cosp3uqq

sinp2uqp5 ` cosp3uqq

sinp3uq

fi

fl ,

γ3puq “

»

–

cosp4uq cosu
sinp4uq cosu

sinu

fi

fl , γ4puq “
1

6

»

–

cosup5 ` cosp10uqq

sinup5 ` cosp10uqq

sinp10uq

fi

fl ,

for u P 2S1. The curves defined by these functions are shown in Figure B.6 along with their
tangent indicatrices and their stereographical projections from the point p “ p0, 0, 1qT .

Since the turning numbers read dpΓp
1q “ dpΓp

2q “ 2, dpΓp
3q “ 5 and dpΓp

4q “ 11, the
tangent turning signature is equal to the equivalence class r0s for the first two curvesΓ1 andΓ2,
and to the equivalence class r1s for the remaining curves Γ3 and Γ4.

B.2.3 ConstantMean Curvature Surfaces

Finally, we show how the Framed curvature flow presented in Chapter 4 can be used to gen-
erate surfaces of constant mean curvature. To improve readability, we restate Example 4.3.9
which uses the specific θ-velocity that leads to constant mean curvature surfaces. In this case,
we assume cylindrically symmetrical configurations that lead to Delaneu surfaces [Del41].

Example B.2.7 (Cylindrical symmetry). Settingw “ 0 reduces the system (4.23) to

d

dt

»

–

θ
ϱ
ω

fi

fl “
1

ϱ2

»

–

sin θ ` ϱH
´ϱ cos θ
ϱ sin θ

fi

fl ,

»

–

θ
ϱ
ω

fi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

t“0

“

»

–

θ0
ϱ0
0

fi

fl .

Figure B.5 depicts the results of the numerical simulation for the initial configuration that
leads to the nodoid surface. All otherDelaneu surfaces canbe obtainedby adjusting the initial
angle θ and the prescribed mean curvature H . The simulation used discrete torsion from
Section B.0.1, and the created surface was ported to Blender for realistic rendering.
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Figure B.5: Rendering of nodoid trajectory surface with constant mean curvature from Ex-
ample 4.3.9. The black circle is the initial conditionΓ0. The rendering was made in Blender.

B.2.4 EvolvingNetworks

This subsection contains selected numerical simulations related to the motion of curve net-
works. The first couple of experiments illustrate the motion by curve shortening flow with
triple junction points and fixed boundary points. The final example depicts the branching
network described in Appendix A.

Figures B.7 and B.8 show the evolution due to the curve shortening flow of networks with
fixed endpoints. The first example is inR2 (Figure B.7) and the second example (Figure B.8)
shows evolving networks of space curves. The final shapes converge to Steiner trees.

FigureB.9 shows abranching tree evolving according to thediscrete gradient flowdescribed in
Subsection A.1.0. All simulations were performed using the Runge-Kutta-Merson method
described in Section B.1. The branching topological changes occur spontaneously via the
mechanism described in Subsection A.1.2.

B.3 Conclusions

This appendix supplements the main text with additional computational experiments and
methodological discussions. It has offered validation for selected theoretical results and pro-
vided further insights for various curve flows covered in the preceding chapters.
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Figure B.6: Locally convex curves from Example B.2.6. Figures adapted from [MB22b].
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Figure B.7: Curve network with triple junction and fixed endpoints evolving according to
the curve shortening flow. Parameters: ∆t “ 0.0, δ “ 10´4 and ω “ 0.8.
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Figure B.8: Evolution of network with parameters α “ 0.6, β “ 0.5,C “ 2,Lα
max “ 10.
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-1
-0.5

 0
 0.5

 1 -1
-0.5

 0
 0.5

 1

-1

-0.5

 0

 0.5

 1

(b) Step 10 (t “ 0.1).

-1
-0.5

 0
 0.5

 1 -1
-0.5

 0
 0.5

 1

-1

-0.5

 0

 0.5

 1

(c) Step 30 (t “ 0.2).

-1
-0.5

 0
 0.5

 1 -1
-0.5

 0
 0.5

 1

-1

-0.5

 0

 0.5

 1

(d) Step 50 (t “ 0.4).

-1
-0.5

 0
 0.5

 1 -1
-0.5

 0
 0.5

 1

-1

-0.5

 0

 0.5

 1

(e) Step 150 (t “ 0.5).

-1
-0.5

 0
 0.5

 1 -1
-0.5

 0
 0.5

 1

-1

-0.5

 0

 0.5

 1

(f) Step 900 (t “ 1.0).

-1
-0.5

 0
 0.5

 1 -1
-0.5

 0
 0.5

 1

-1

-0.5

 0

 0.5

 1

(g) Step 150 (t “ 2.0).

-1
-0.5

 0
 0.5

 1 -1
-0.5

 0
 0.5

 1

-1

-0.5

 0

 0.5

 1

(h) Step 900 (t “ 9.0).

Figure B.9: Example of space curve network with fixed endpoints evolving according to the
curve shortening flow. The simulation ran with timestep∆t “ 0.01 and the Runge-Kutta-
Merson controlling parameters δ “ 10´4, ω “ 0.8.
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(a) Initial curve Γ0 (up to rotation).
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(b) Final curve Γt(up to rotation).

0 1 2 3 4 5 6

u

1.0

1.1

1.2

1.3

1.4

1.5

g

(c) g|t“0 (black) and g|t“t (gray).

0 1 2 3 4 5 6

u

0

1

2

3

4

5

κ

(d) κ|t“0 (black) and κ|t“t (gray).

0 1 2 3 4 5 6

u

4

6

8

10

τ

(e) τ |t“0 (black) and τ |t“t (gray).

0.00 0.05 0.10 0.15 0.20

t

0

2

4

6

8
τmin
κmin
κave
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Figure B.10: Numerical solution to (2.5-2.8) with the initial condition given by (B.9). The
curvature κ vanishes at t “ 0.20628. The curves Γ0 and Γt were reconstructed from κ, τ
and g. The position and orientation was partially recovered using the Principal component
analysis [Jol02]. However, the rotation around the z-axis was not preserved.
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