CzecH TECHNICAL UNIVERSITY IN PRAGUE
Faculty of Nuclear Sciences and Physical Engineering

Department of Mathematics

Properties and Applications of Geometric Flows

DISSERTATION THESIS

2023 Jit{ Minar¢ik






Author

Title of Dissertation
Degree of Study
Field of Study
Supervisor
Academic Year
Number of Pages

Keywords

Bibliographical Entry

Ing. Jiti Minar¢ik

Properties and Applications of Geometric Flows
Application of Natural Sciences

Mathematical Engineering

Prof. Dr. Ing. Michal Bene§

2023

139

Geometric flow, space curves, minimal surfaces.



Autor

Nizev Prace
Studijni Program
Studijni Obor
Skolitel
Akademicky Rok
Pocet Stran

Kli¢ov4 Slova

Bibliograficky zdznam

Ing. Jiti Minar¢ik

Properties and Applications of Geometric Flows
Aplikace ptirodnich véd

Matematické inZenyrstvi

Prof. Dr. Ing. Michal Bene§

2023

139

Geometricky tok, prostorové kiivky, minimdlni plochy.

II



Abstract

ENGLISH

This thesis focuses on geometric flows of curves in three-dimensional Euclidean space, a sub-
ject often overshadowed by the study of higher-dimensional or intrinsic flows. The work
presents analytical and topological advancements, particularly in higher codimension curve
shortening flow as well as in the introduced minimal surface generating flow and framed cur-
vature flow. Utilizing tools from nondegenerate homotopy and geometric knot theory, the
study augments the available methods for understanding the long-term behavior of evolving
space curves. These developments have the potential to be applied in various fields, including
fluid dynamics, material science, and computer graphics.

CzecH

Tato price se zaméfuje na geometrické toky kiivek ve tffrozmérném eukleidovském prostoru,
téma, které je Casto zastinéno studiem vy$sich dimenz{ nebo intrinzickych toku. Préce pred-
stavuje analytické a topologické pokroky, zejména ve zkracovini kfivek vyssi kodimenze, ste-
jné jako v ptedstaveném toku generujicim minimdlni plochy. S vyuZitim néstroji z nedegen-
erované homotopie a geometrické teorie uzlt préce rozsituje dostupné metody pro pochopent
dlouhodobého chovini vyvijejicich se prostorovych ktivek. Tyto vysledky mohou nalézt up-

latnéni v rtiznych oblastech, véetné dynamiky tekutin, materidlové védy a pocitatové grafiky.
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STATE OF THE ART

The study of geometric flows has been an area of rigorous academic inquiry for decades, lead-
ing to groundbreaking results like the proof of the Poincaré conjecture. Nonetheless, the
majority of this body of work has primarily focused on intrinsic flows, flows in abstract am-
bient spaces, and higher-dimensional flows of hypersurfaces. While these topics are undoubt-
edly important, they often leave out the specific challenges and peculiarities of evolving space
curves in three-dimensional Euclidean space.

Although the evolution of curves in higher dimensional spaces has seen specialized applica-
tions, among others in fluid dynamics through the binormal flow or in computer graphics
for modeling elastic rods, the short and long-term behavior of space curves subjected to geo-
metric flows are areas that are not yet fully understood, leaving room for new discoveries.

GoaALs

The primary aim of this work is to delve into the properties and behaviors of evolving space
curves, specifically in three-dimensional Euclidean space. This research looks to fill existing
gaps in the literature by addressing challenges tied to the topology and knotted configurations
of these curves. Additionally, the work aims to develop new analytical and topological tools
tailored to these questions.

METHODS

The topic of geometric flows requires knowledge of analytical tools in partial differential
equations, geometric measure theory and differential geometry. Furthermore, The challenges
related to the definition of Frenet frame demand the use of topological tools from homotopy
theory and geometric knot theory. Finally, computational simulations aided by discrete dif-
ferential geometry and numerical analysis provide empirical support for theoretical findings.

REsuLTS

The work offers novel insights into the long-term properties of curve shortening flows in
space curves, and presents analysis of new geometric motion laws and their trajectory sur-
faces. Another contribution is the introduction of a new invariant quantity called the tangent
turning signature and the use of nondegenerate homotopy theory for geometric flows.

RAMIFICATIONS

The findings of this work are anticipated to have ramifications not just in the mathematical
understanding of geometric flows but also in applications that extend to data denoising, vi-
sualization, and robotics. By deepening the comprehension of how space curves evolve over
time, this research stands to offer new avenues for both theoretical and applied sciences.



Introduction

This work presents a collection of the author’s results related to geometric flows of curves in
space. These flows are pivotal for understanding and modelling significant natural phenom-
ena, such as turbulence or the dynamics of dislocation lines. Furthermore, they offer valuable
applications in areas like data denoising, visualization, and robotics.

The study of geometric flows is an active research domain with a rich history and important
results including the proof of the Poincaré conjecture. Yet, recent research trends have mainly
focused on intrinsic flows, flows in abstract ambient spaces, or the higher-dimensional flows
of hypersurfaces. The evolution of space curves in three-dimensional Euclidean space is often
relegated to specialized contexts, such as fluid dynamics in the binormal flow case or computer
graphics for evolving elastic rods.

This leaves many fundamental questions related to the short and long-term behaviour unan-
swered. Moreover, evolving space curves present challenges posed by the topology of their
framing and the potential for knotted configurations. This work aims to address these chal-
lenges and provide new analytical and topological tools for answering them.

0.0 OVERVIEW
The thesis consolidates and presents key findings drawn from the following research articles:

[MKB19] J. Minar¢ik, M. Kimura, and M. Benes. “Comparing motion of curves and hy-
persurfaces in R™”. In: Discrete and Continunous Dynamical Systems Series B 2.4

(2019), pp. 4815-4826.
[MB2o] J. Minar¢ik and M. Benes. “Long-term behavior of curve shortening flow in R3”.
In: SIAM Journal on Mathematical Analysis 52 (2020), pp. 1221-1231.
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[MB22a] J. Minar¢ik and M. Benes. “Minimal surface generating flow for space curves of
non vanishing torsion”. In: Discrete and Continuous Dynamical Systems - Series
B 27 (2022), pp. 6605-6617.

[MB22b] ]. Minar¢ik and M. Benes. “Nondegenerate Homotopy and Geometric Flows”.
In: Homology, Homotopy and Applications 24 (2022), pp. 255-264.

[MB23] J. Minar¢ik and M. Bene$. “Trajectory Surfaces of Framed Curvature Flow”.
Preprint 2023.

Itis divided into one introductory chapter with an overview of related work, 5 chapters with
new results from the articles above, and an appendix with computational experiments. The
contents of each chapter are outlined in the following list.

Ch. o. Introduction. This chapter introduces the broader topic of geometric flows with an
emphasis on space curve evolution. An extensive list of applications and approaches
for modelling geometric flows is provided along with an overview of related work.

Ch. 1. Higher Codimension Curve Shortening Flow. Collections of results from arti-
cles [MKB19] and [MB20] related to the long-term properties of the curves short-
ening flow of space curves. Contains the generalized comparison principle, its con-
sequences and results related to evolution of specific families of space curves.

Ch. 2. Minimal Surface Generating Flow. In this geometric flow of space curves, intro-
duced in [MB22a], the curve traces out zero mean curvature surface. This chapter
covers the properties of general trajectory surfaces, derivation of the minimal sur-
face generating flow and all results from [MB22a], including the terminal time and
generated area estimates, analytical example and integral of motion.

Ch. 3. Nondegenerate Homotopy. Formulating geometric flows of space curves using
quantities derived from the Frenet frame restricts the motion to one connected com-
ponent of the space of locally convex curves. This chapter addresses this problem by
using a new invariant quantity called tangent turning sign, proposed in [MB22b].

Ch. 4. Framed Curvature Flow. This chapter introduces the framed curvature flow from
[MB23]. Itis a generalization of both the curve shortening flow and the vortex fil-
ament equation. After establishing local existence and global estimates, we analyze
the trajectory surfaces generated by different variations of this flow, specifically those
leading to surfaces of constant mean or Gaussian curvature.

Ch. A. Appendix: Evolution of Filament Networks. This chapter covers evolving fil-
ament networks that optimize energy leading to branching structures with triple
junctions. We derive and study the discrete gradient flow for this energy and the
branching condition it induces.

Ch. B. Appendix: Computational Experiments. The second part of the Appendix con-
tains a collection of selected results from computational experiments related to prob-
lems studied in Chapters 1 to 4 and Appendix A.

Apart from introductory sections, the thesis contains only results from author’s own work.
All restated results from the literature are clearly marked with the appropriate reference.



(a) Material dislocation lines. (b) Knotted vortex filament. (c) Solar magnetic field lines.
Ex. 9. Image from [KR12]. Ex. 4. Image from [KI13]. Ex. 5. Image from [M A19].

Figure 1: Examples of important natural phenomena at three drastically different scales in-
volving one dimensional filaments that can be modeled as geometric flows of space curves.

0.1 MOTIVATION

Although this work does not address a specific application, it is good to have in mind the
possible use-cases of the theory at hand. This section covers a range of possible applications
of geometric flows in science, engineering and various domains of mathematics.

0.1.0 APPLICATIONS IN SCIENCE

A surprising number of natural and artificial phenomena around us can be described using
a one-dimensional filament in three-dimensional Euclidean space moving according to laws
formulated as partial differential equations which depend on the state of the environment and
the shape of the filament itself. The simplification of complex three-dimensional dynamical
systems to a moving space curve enables faster and more scalable numerical simulations and
often uncovers new insights and intuitive explanations.

Example List o.1.1 (Applications in science). Overview of models based on evolving curves or

hypersurfaces that are useful for understanding phenomena in physics, biology and chemistry.

Ex. 1. Cell membranes. The Canham-Helfrich model explains the shape of biological
cells by minimizing the energy functional given by

CH(Et) = f OZH(H - HO) - OéKKdA,
PO

where oy, g and H are fixed constants and H, K are the mean and Gauss curva-
ture of the surface ¢, respectively. This leads to a modified version of the Willmore
flow and its limiting shapes can among others explain the distinctive shape of red

blood cells [BLS20].

Ex. 2. Dynamics of DNA and Proteins: At the microscopic scale, DNA and proteins ex-
hibit shapes and dynamics that can be represented as evolving curves in R3. In many



applications, DNA is modeled as an evolving ribbon, especially when simulating ef-
fects such as supercoiling [RCV93]. Techniques like the Kirchhoff-Love rod model
can be employed for this purpose [DGM13]. Another critical aspect is the inter-
action of topoisomerase with DNA, which is essential for untangling the molecule
during meiosis [Sum86].

Ex. 3. Phase singularites. Scroll waves in excitable media are spiral-shaped waves that oc-
cur in chemical reactions, like the Belousov—Zhabotinsky reaction, or biological sys-
tems such as the cardiac tissue where the electrical pulses are modeled using reaction-
diffusion equations like the FitzHugh-Nagumo equation. When modeled in three-
dimensional space, the phase singularities lie along a space curve that evolves based
on geometrical properties such as the twist of the curve [MS16; MS19; Kee88].

Ex. 4. Magnetic field lines. The dynamics of solar flares and other astrophysical phenom-
ena can be studied using evolving curves representing magnetic field lines. These
models may lead to a better understanding of high-energy events and their impact on
Earth [YHW1o0] and they can also be used for solar corona visualizations [Pad+22].

Ex. 5. Vortex filaments. Vortices represent concentrated regions of vorticity in fluid dy-
namics. Their motion can be modeled by the binormal flow, also known as the vor-
tex filament equation [Vegrs], which is the localized induction approximation of
the Biot-Savart equation [Ricg1]. Vortex filaments in superfluids or Bose-Einstein
condensates can be modeled by curvature-driven flow similar to the vortex filament
equation [Bar+97]. Unlike the classical vortices that can quickly dissipate, the sta-
bility of quantum vortices allows interesting reconnection dynamics [ZR22].

Ex. 6. Hele-Shaw problem. Hele-Shaw flows occur when a viscous fluid is squeezed be-
tween two parallel plates [Saf86; Helg8]. By treating the fluid boundary as an evolv-
ing curve, one can study the fingering pattern formation mechanism [SSY22].

Ex. 7. Crystal growth. The process of solidification of materials with crystalline struc-
ture can be described as a moving boundary problem in an anisotropic environment
[Gurg3]. The mathematical formulation of this problem leads to Finsler geometry.

Ex. 8. Grain boundaries. The evolution of grain boundaries in grain boundaries of poly-
crystalline materials affects their mechanical properties and can be modeled as hy-
persurfaces moving according to the mean curvature flow [Muls6].

Ex. 9. Dislocation dynamics. Dislocationsin crystals, seen as defects along a curve [Mur87],
can be modeled as curvature-driven flow with an external forcing term that can ac-
count for interactions with other dislocation loops or other defects [Kol+18].

Ex. 10. River meandering. Rivers are dynamic geological structures that can significantly
change their shape in timescales of single years. The simplest mathematical model
describes the river bed centerline as a planar curve evolving with normal velocity

UN = O % K, o(s) =my0(s) + maH(s)e %,

where m1, mo and « are constants, H is the Heaviside function, ¢ is the Dirac delta
and x denotes convolution. The model takes into account the upstream curvature of



(a) Knotted DNA molecule. (b) Meandering river bed. (c) B.-Z. reaction scroll waves.
Ex. 2. Image from [al8s]. Ex. 10. Image from [Imar4]. Ex. 3. Image from [WHBoo].

Figure 2: Besides physics, modelling of one-dimensional filaments is useful in many domains
of science. This figure illustrates examples from biology, geology and chemistry.

the curve to approximate the rate of experienced erosion. This model was suggested
in [Furg1] and later studied in e.g. [Fur88; OAo8; Par+11; FL13].

Ex. 11. Wearing process. One of the first applications of the mean curvature flow was the
description of the natural wearing process of stones and other materials that are sub-
jected to various forms of natural wear such as erosion [Firy4].

0.1.1 APPLICATIONS IN ENGINEERING

As three-dimensional digital design advances, both in complexity and prevalence, the rele-
vance of geometric flows in engineering becomes more important. These principles have
applications ranging from image processing and architectural design to computer graphics
and robotics. By understanding the dynamics of curves and surfaces, engineers have a more
rigorous approach to address various challenges in their respective domains.

Example List o.1.2 (Applications in engineering). Overview of models based on geometric
flows that can be used for solving problems in computer science, civil engineering, robotics, etc.

Ex. 15. Image processing. Although modern image processing techniques usually involve
convolutional neural networks or similar architectures, the contour capture via a
modified curve shortening flow has been successfully used for segmentation in med-
ical, geological, and other domains [BCMo4; Ben+08; Caoo3; PM87].

Ex. 16. Architecture. In architecture, the design of complex structural forms like bridges,
towers, and buildings often involves the movement and optimization of curves in
space. Examples of such processes can be found in [Rem+14].

Ex. 17. Computer graphics. In computer graphics, modeling objectslike ropes, hair, clothes,
or smoke involves moving curves or elastic rods in a virtual three-dimensional space.
Another technique called Schrédinger’s smoke [Che+16] uses binormal flow to model
vorticity lines for efficient smoke and dust animations in games and CGI effects.



Ex. 18. Diagram layout. Mathematical visualization software like KnotPlot [Sch2.2] or Pen-
rose [Ye+20] performs automatic layout of geometric primitives like curves by a pro-
cess that usually involves gradient flows of some curve functional.

Ex. 19. Network analysis. Generalized notions of geometric flows have been used in the
context of graph learning and network analysis. Recent examples include commu-
nity detection methods using the Ricci flow [Ni+19] or various uses of the Ollivier-
Ricci curvature [CDR22] defined even for hypergraphs.

Ex. 20. Robotics. In robotics, for example in the design of multi-jointed manipulators,
optimal curves represent the trajectories in the constrained configuration space of
the robot. Another interesting example involves the optimisation of medical robot
trajectory during colonoscopy [MU14]. Another related example is the optimal
origami folding studied in [DOo7; FT99].

Ex. 21. Fire front propagation. The progression of wildfire fronts can be effectively de-
scribed as a moving curve whose dynamics depend on the terrain, vegetation, and
wind [MKFoo]. This helps in forecasting the spread of fires and designing effective
firefighting strategies. A related problem with a different solution is the modelling
of the smoldering front via the Kuramoto-Sivashinsky model [Kol+21].

Ex. 22. Data denoising. In computer graphics and geometry processing, the mean curva-
ture flow can be used for smoothing surfaces, denoising point clouds, or morph-
ing between shapes. Applying the mean curvature flow on point clouds and mesh
structures helps in removing noise and imperfections, thus producing smoother and
cleaner data representations [Ale+o3].

0.1.2 APPLICATIONS IN MATHEMATICS

Besides the applications in science and engineering, various geometric flows have proven to
be remarkably useful tools in theoretical fields ranging from geometrical measure theory to
differential topology, enabling the proofs of many long-standing problems. We believe that
this area is still ripe for new results, particularly in the case of higher codimension motion,
which typically receives less attention. For example, open problems from [Gho19] may be
within reach, provided that further analysis of framed curvature flow is pursued.

Example List o.1.3 (Applications in mathematics). Methods based on geometric flows that
bave led to important proofs or provided novel insights in various fields of pure mathematics.

Ex. 23. Penrose inequality. The Penrose inequality, a result in the field of general relativity,
gives a lower bound for the total mass of a spacetime, given the area of the event
horizon of its black holes [HIo1]. The proof of this inequality was made possible
using the inverse mean curvature flow, demonstrating the profound interconnection
between geometric analysis and the physics of black holes.

Ex. 24. Poincaré conjecture. Richard Hamilton’s work on Ricci flow and later Grigori
Perelman’s work on the Ricci flow with surgeries [Pero2; Pero3b] played a central
role in the proof of the long-standing Poincaré conjectures in dimension 4.
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(a) Surface under Ricci flow. (b) Sphere eversion model. (c) Rendering of knotted tube.
Ex. 30. Image from [Slao7]. Ex. 26. Image from [Sulo2]. Ex. 27. Image from [Sch22].

Figure 3: Rendering of objects obtained by running various geometric flows.

Ex. 25. Geometrization conjecture. The Geometrization conjecture, proposed by William
Thurston and later proved by Grigori Perelman [Peroz; Perosb], provides a compre-
hensive picture of the possible shapes of three-dimensional spaces. The use of Ricci
flow was key to its proof which demonstrates the utility of geometric flows as tools

for addressing problems in topology.

Ex. 26. Sphere eversion. Sphere eversion is a regular homotopy through immersions of
2-sphere in R? from f: S? — R3 to —f. In another words, this process turns
the initial sphere inside out [Smas8]. There are many proofs and visualizations of
this counterintuitive result. Perhaps the most elegant and visually appealing has been
achieved by applying the Willmore flow to half-way models such as the Boy’s surface.

Ex. 27. Knot energies. The evolution of knot embeddings towards the critical points of
O’Hara type energies [OHag1] has shown to be a crucial tool in modern knot the-
ory research [Abr+o1]. Aiding intuition and adding beautiful visualisations to this
topological subject [Sch22].

Ex. 28. Minimal surface theory: Minimal surfaces, which are surfaces with zero mean cur-
vature at every point, have been a topic of significant interest due to their beautiful
geometric properties and numerous applications in both pure and applied mathe-
matics. One of the primary tools to study and construct minimal surfaces is the mean
curvature flow. As minimal surfaces are critical points of this flow, one can use e.g.
the Brakke Surface Evolver [Brag2] to investigate and visualize minimal surfaces with
prescribed boundary conditions.

Ex. 29. Willmore conjecture: The Willmore flow can be used to find surface immersions of
minimal bending energy. A famous example is the Clifford torus, which is defined
as the product of two circles with different radii in R* and then projected to R.
Thomas Willmore conjectured in 1965 that this shape with Willmore energy of 272
is optimal amongall surfaces of genus one. This conjecture remained open for several
decades until it was proved by Fernando Coda Marques and André Neves in 2012.
Their proof uses min-max theory and the theory of minimal surfaces to confirm the
long-standing conjecture [MN14].
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Ex. 30. Ricci flow: After the excitement about Ricci flow, generated by Perelman’s proof,
more recent work on Ricci flow led to results such as the Generalized Smale conjec-
ture [BK22] and the Differentiable Sphere Theorem [BSo9].

0.2 GEOMETRIC FLOowsS

Let us give a brief overview of geometric flows. In simple terms, they are partial differential
equations that dictate the time evolution of a manifold given by its properties. One may
classify them into two general groups; intrinsic and extrinsic; based on whether the governing
motion law depends on extrinsic properties, i.e. requires the manifold to be immersed in some
ambient space. We first describe these two groups in more detail and with specific examples,
and then turn to the special case of geometric flows of curves.

0.2.0 INTRINSIC FLOWS

In the context of intrinsic geometric flows, we consider a family of manifolds (M, g) equipped
with a time-dependent Riemannian metric g. The evolution equation of the metric g usually
depends on the some notion of curvature.

Definition o.2.1 (Intrinsic geometric flow). An intrinsic geometric flow is a one-parameter
family of Riemannian metrics g(t) on a smooth manifold M, such that the metric evolves in
time according to a given geometric property, like the curvature tensors of the manifold.

The governing equations for intrinsic flows typically involve the Riemannian curvature ten-
sor R,,,, its trace called Ricci curvature Ric = trR,,,, or the scalar curvature R = trRic.

Example List o.2.2 (Intrinsic geometric flows). Specific examples from Definition 0.2.1:

Ex. 31. Ricci flow. The most widely studied intrinsic flow has the form
drg = —2Ric(g),

where Ric is the Ricci curvature tensor, see e.g. [Topo6] for general introduction.
Ricciflow was introduced by Richard Hamilton [Ham82] and used by Grigori Perel-
man to prove the Geometrization conjecture and thus the Poincare conjecture in di-
mension 4 [Pero3a]. Although not exactly, it is similar to the heat equation and can
be formulated as a gradient flow [Pero2]. Even though it can encounter singularities,
its existence can be extended by surgeries [Perosb].

Ex. 32. Yamabe flow. This flow deforms the Riemannian metric tensor g and tends to a
metric of constant scalar curvature I, see [Yeg4; Breos]. It is a gradient flow of the
Yamabe functional, which is proportional to the total scalar curvature over M.

Ex. 33. Calabi flow. There have been other intrinsic flows, that can be applied to specific
types of manifolds with more structure. Notable example is the Calabi flow defined
on Kihler manifolds.

As the notion of intrinsic flow is not useful for curves, the rest of this work deals only with
extrinsic motion laws. We explore the basic notions in the next section.

I2



Figure 4: Depiction of objects used in the definition of general extrinsic flows.

o0.2.1 EXTRINSIC FLOWS

In most scientific applications, we typically study manifolds immersed in specific ambient
spaces, such as the Euclidean R3, the Minkowski spacetime, or the de Sitter space depending
on the specific physical context. To this end, we fix the base manifold M of dimension m
and consider a time-dependent family of immersions (see Figure 4)

F: Mx[0,t) — (N,7),

where (N, g) is the ambient Riemannian manifold of dimension n with metric g.

The immersion F' induces a new metric g on M. In local coordinates of M with basis
{i}i<m, the metric g is given by the expression

9i5 = <5351F‘7 8$JF>

To further simplify the matter for this overview, let us assume that the immersion is a hy-
persurface of codimension one, i.e. 7 is one less than m. For a general treatment of higher
codimension flow, see the survey [Smo12].

In the codimension one case, we will consider flows in the form

6tF(pat) = V(p7 t)l/(p? t) (I)

forp e Mandt € [0,t), where v is the outward normal vector and the specific expression
for the normal velocity V' shall be specified in the examples later.

Definition o.2.3 (Extrinsic flows). Extrinsic flows describe the evolution of a manifold M
immersed in an ambient space (N, §) according to the equation in the form (1), where the nor-
mal velocity V' depends on geometric properties defined with respect to the ambient space. They
often involve the extrinsic curvatures like the mean or Gauss curvature.

Example List o.2.4 (Extrinsic flows). Specific examples from Definition o.2.3:
Ex. 34. Mean curvature flow. The simplest and most studied flow written as
V =-H,

where H is the mean curvature of the hypersurface. See e.g. [Hui84].
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(a) Graph representation. (b) Level set method. (c) Parametric approach.

Figure 5: Types of representations from Example List 0.3.1.

Ex. 35. Inverse mean curvature flow. This flow expands, given by
V=H"

rather than contracts the initial hypersurface. It led to a new proof for the Rieman-
nian Penrose inequality [HIor] for black holes.

Ex. 36. Willmore flow. Gradient flow of the Willmore energy, can be written in the form
V =2A,H + H® — AHK,

where A is the Laplace-Bertrami operator with respect to the induced metric g, H
and K are the mean and Gauss curvatures, respectively. See e.g. [Obeo7].

More examples are given in the next section which is focused on one-dimensional objects.

0.3 CURVE FLows

This thesis studies the extrinsic flow of curves. This section gives an an overview of this field,
covers different approaches, provides specific examples, and introduces the notation.

0.3.0 REPRESENTATION APPROACHES

Representing geometric objects, like curves and surfaces, can be accomplished through vari-
ous mathematical formulations. This section explores commonly used representation meth-
ods and discusses their advantages, limitations, and applications.

Example List 0.3.1 (Representations). Representation approaches and their advantages:

I. Parametric approach. Perhaps the most straightforward representation is one where
the base manifold is parametrized by 7 free variables and the mapping F' is given by

F(p,t) = F(uf (p),...,uf (p),1).

14



Note that throughout this work, this function F will usually be denoted by . Its
advantage lies in simplicity and simple discretization for computational purposes, but
it cannot handle topological changes, like merging or splitting [Bin+23].

II. Graph representation. Some hypersurfaces can be represented as a collection of points

1 n—1 1 n—1 n
(..., 2" U(zh,..., 2" 7)) e R",
where 21, ..., 2" ! are first n — 1 coordinates in some bases of R™ and W is a func-
tional defined on a domain Q@ < R™ . This approach is quite limited as the func-
tional ¥ must be injective, but after appropriate coordinate transformation, it can
sometimes be used for local analysis [DS23].

III. Level set representation. The level set method makes use of an auxiliary functional
® defined on the ambient space (N, ). The manifold (M, g) can then be retrieved

as the zero level set of @, i.e.
M; = @;1(0) ={reN: &(x,t) =0},

where ®; = ®(-,t). This approach handles all topological changes automatically
but is numerically more expensive to model as ® must be defined on potentially large
dimensional spaces [Setg6; OS88]. Itis not easily extensible to the higher codimension
case, but this generalisation is possible [Bur+o1; AS96].

IV. Phase field method. This method is based on the idea of using a smooth function to
approximate the characteristic function of the manifold, allowing smooth transitions
between phases. Itis particularly useful for simulating complex interfacial phenomena.
As itis also an implicit model, it shares most of the advantages and disadvantages with
the level set method. For details, see e.g. [CH58; Cag86; Benor; Gar+23].

0.3.1 PARAMETRIC METHOD

Throughout most of this thesis, we use the parametric approach, for its mathematical sim-
plicity and simple numerical implementation. We also aim to take advantage of the fact that,
unlike other approaches, it easily generalizes to higher codimension flows.

In this section, we define the necessary notation for the parametric space curves in motion
and recall the governing equations for a general geometric flow of curves in R3.

Let {T'; }4e[0,1) denote a family of closed curves in R? evolving in time interval [0, ), where
t > 0is the terminal time. For given t € [0, t), the curve I'; is represented by a parametriza-
tion y(+,t): ST — R3, where S' = R/27Z is the unit circle.

We use the standard notation for the Frenet frame, i.e. T', N, and B denotes the tangent, nor-
mal, and binormal vector, respectively. The curvature and the torsion, given by the Frenet-
Serret formulae, are denoted by « and T, respectively. Finally,

g :=[0u7

is the local rate of parametrization and ds = g du is the arclength element.
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Definition o.3.2 (Geometric flow of curves). The time evolution of {T't }1e(0,¢) is given by the
geometric flow in the form of the following initial-value problem fory = v(u, t):

oy =vrT +vyN +vpB in St x (0,1), (2)
Ylt=0 =0 in S, (3)

where 7y is the parametrization for the initial curve 1. Since the motion in the direction of the
tangent vector T does not affect the shape of the curve, we often assume that vy = 0.

0.3.2 ExAMPLES

This subsection provides an extensive overview of geometric flows of curves, both in plane
and high-dimensional spaces. Itshould serve as a useful guide and reference for future readers.

Example List 0.3.3 (Geometric flows of space curves). Examples from Definition 0.3.2:

Ex. 37. Curve shortening flow. The most famous curve flow and the one that is the easiest
to study due to its connection to the heat equation is

Ory = 0%y = kN.

It has been extensively studied in R? [GH86; Gra87], and its generalization to higher
codimensions is discussed in Chapter 0.4 which also contains further references.

Ex. 38. Vortex filament equation. The binormal flow is defined as
Opy = 0sy X 0%y = kB

is in many senses orthogonal to the curve shortening flow. It preserves the local rate
of parametrisation g and thus the length has a surprising connection to a nonlin-
ear Schrédinger equation through the so-called Hashimoto transform [Has72] and
it arises in fluid dynamics as a model for vortex dynamics via a linear induction ap-
proximation of the Biot-Savart equation [Rico1].

Ex. 39. Elastic flow. Similarly to the Willmore energy, the elastic energy is the integral of
curvature squared over the curve I';. The gradient flow of this energy has the form

Oy = (287% — K3 — 20%K)N — (40,KT + 2K0,7)B.

Or the equation d;y = —k3N — 202k N for planar curves. This flow leads to
elasticae curves which were studied from the time of Euler [Eul44; 1L.S84].

Ex. 40. Minimal surface generating flow. The curve moving according to
_1
6t7 =7 2N
traces out a zero mean curvature surface. This motion law has been introduced in

[MB22a] and is the subject of Chapter 2.
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Ex. 41.

Ex. 42.

Ex. 43.

Ex. 44.

Ex. 45.

Framed curvature flow. Another flow related to trajectory surfaces is
0y = kg = kcos N + ksinf B,

where 6 is a function defined along the curve and depends on time. This flow is
introduced in Chapter 4 of this thesis.

Writhe minimising flow. The following flow of space curves
Opy = —05(0sy x 0%) = kTN — 0,5 B

maximizes the total torsion, or equivalently due to the Cilugireanu theorem, it min-
imizes the property called writhe of embedded curves.

Second-order elastic flow. Another interesting gradient flow is
Oy = (202K — K(0sK)* + 2620%k — 2720%K)N + 2(0,70%k + 270%K) B

or again its planar version 0;y = (202K — k(dsk)? + 26202K) N. In this case, the
minimized functional is the integral of (9+)? over I';.

Knot energy minimisation. In [OHag1; OHag2], Jun O’Hara studied knot ener-
gies that define optimal embeddings of knotted curves [KS97; Abr+o1]. The sim-
plest example is the Mbius energy defined as

1 1
M(Ft) ) SIJ;[u |:||’7(u7t) - 7(”70“2 - D(v(u,t),'y(v,t))

5 | dudv,

where D(y(u,t),v(v,t)) is the shortest arc distance along the curve I'; between
the two points y(u, t) and (v, t). Analysis of gradient flows for these energies was
conducted in e.g. [Bla18; RS21].

Repulsive Flows. Similarly to the O’Hara-type energies, repulsive flows studied in
[Yu+21; YSC21] lead to optimal embeddings of curves or surfaces given their topol-
ogy. These flows minimize the tangent point energy given by

TP(T,) = U g(”(’ RLICRO

o plu,v,t)
X

where p(u, v, t) is the radius of the smallest sphere tangent to the curve at y(u, t)
and passing through the point y(v, t).

Remark 0.3.4. This list is not comprebensive, but many other flows studied for specific scientific
or engineering applications are derived from the listed motion laws by the addition of external
forcing term or can be written as a linear combination of the above laws. For example, in the con-
text of quantum vortices in Bose-Einstein condensate, dictated by the Gross-Pitaevskii equation,
the linear induction approximation of the flow bas form

Oy = adsy x 0%y — bdsy x (0577 x 02y) = akB + bk N,

where a and b are physical constants. See [ZRz22; Bar+97; Feyss |.
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Figure 6: Frenet vectors of curve I'y at the point y(u, t).

We also include a short list of alternative but related problem statements.

Example List 0.3.5 (Adjacent curve flow problems). This list complements Example List
0.3.3 with additional problems that involve the motion of curves but do not fit Definition 0.3.2:

Ex. 46.

Ex. 47.

Ex. 48.

Ex. 49.

Network flow. The study of network flow extends the geometric flow of individual
curves to a system of interconnected curves or networks. This typically introduces
additional complexity, such as the behavior at junctions. One interesting application
is in the study of Steiner trees, which aim to connect a set of points with the shortest
possible total length. Analysis of network flows has been carried out in [NPP2o;
NPP19; BW9s; Man+18]. The topic is also discussed in Chapter A of this thesis.

Anisotropic motion. Anisotropic motion involves geometric flows where the speed
of motion depends not only on curvature but also on the direction of the normal vec-
tor. This dependence on direction introduces a Finsler metric into the problem and
can lead to the evolution of curves towards certain shapes, known as Wulff shapes,
that are determined by the anisotropy [BP96].

Exotic ambient spaces. Another interesting direction is the study of extrinsic flows
in non-standard ambient spaces, where even simple flows can lead to unexpected be-
haviour. For example, one might consider curve shortening flow in the context of La-
grangian mean curvature flow [ELW22], where curves move in a high-dimensional
symplectic manifold.

Interacting curves. Interacting curves consider the behavior of multiple curves that
influence each other’s motion. This interaction can lead to complex dynamics and
patterns, such as those studied in [BKS22].

0.4 TECHNICAL PRELIMINARIES

This purely technical section states useful apparatus utilized across this thesis. It may serve as

auseful glossary of evolution equations for curve flows as it covers most of the basic equations

for general velocities vy and vp. Ithowever ignores the tangential term v for simplicity. For

alternative equations including non-trivial tangential velocity see e.g. [BKS22].
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0.4.0 LocAL QUANTITIES

In the rest of this chapter, we implicitly assume that {I'; };¢[0,¢) is a family of space curves
evolving according to a general geometric flow given by velocities vy and vp.

Lemma o.4.1 (Arc-Length commutator). The arc-length commutator during the general ge-
ometric flow of curves given by

[ah as] = atas - asat = K’UNas' (4)
Equivalently, the local rate of parametrisation evolves as 0yg = —KUNg.
Proof. The statement is a special case of Proposition 1 from [BKS22]. O

Remark o0.4.2. Note that some authors express the evolution equations in terms of the normal
component of the arc-length derivative V s defined as

Vs¢ = (99(25 - <as¢7 T>T
for vector functions ¢: S L R3. We will avoid this notation and only use 0.

Proposition 0.4.3 (Local quantities). The evolution equations for the local geometric quanti-
ties during the motion given by (2-3) can be retrieved from the general algebraic framework for
invariant submanifold flows devised in [Olvo8]. According to Example 5.7 from [Olvo8], the
equations for vy = 0 read

dtg = —gunk, (s)
Ok = éf’uN + k2N — 270,up — VBT — UNTZ, (6)
0T = 2UNKT + KOsUB + 63[%(111\;857' + 270s0N + 6?1}3 - UBTQ)], (7)

Proposition o.4.4 (Frenet frame evolution). The time evolution of the Frenet frame reads

T 0 0sUN — VBT UNT + 0s¥B T
0 | N| = | —0suny +vpT 0 1) I N|, (8)
B —UNT — OsUB —¢ 0 B

where the last entries are ¢ = +(vn0sT + 270,uN + 02vp — vpT?).

K
0.4.1 GLOBAL QUANTITIES

We also include a brief overview of important evolution equations for global geometric quan-
tities. Since the arc-length parametrisation is time-dependent (see Lemma 4.1.1), the path in-
tegral does not, in general, commute with the time derivative. Instead, it behaves in the way
described in the following lemma.

Lemma 0.4.5. For any differentiable map ¢: S* x [0,t) — R4 with d € N we bave

4 ¢ds = Orp — kun ¢ ds.
dt Ft Ft
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Proof. Usingds = g du we transform the integral into one that commute with J; as

d d 0
— ¢ds = —f ¢gdu = f 019 + ¢0rgdu = 8t¢+¢ﬁ ds.
dt T, det S1 S1 T g
The statement is then obtained by applying the commutator lemma. O

Based on this lemma, we now state the evolution equation for global quantities of interest.

Proposition 0.4.6 (Evolution of Global Geometric Quantities). Lez {I't }1e[o0,+) be a family
of curves evolving according to the general geometric flow with velocities v and vp. Then

d
EL(B) =— JF,, Koy ds,
d 2
— kds = — TOsvB + T vN ds,
dt I I
d

— Tds = J KTUN + KOsvup ds,
dt Ft Ft

where L(T'y) denotes the length of the evolving curve T'y.
Proof. All formulas follow from Lemma o0.4.5 and use the fact that the curve is closed.  [J
In later chapters, these equations will lead to important statements about the long-term be-

haviour of specific geometric flows, like the estimates for the maximal time of existence, clas-
sification of singularities, or changes in topological properties like self-linking.
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High-Codimension Curve Shortening Flow

This Chapter presents results from articles [MKB19] and [MB2o] that focus on the long-
term behaviour of curve shortening flow in higher dimensional ambient spaces. The theo-
retical efforts to understand the properties of the original curve shortening problem in R?
have led to several important results obtained by Hamilton, Gage, and Grayson in [GH86;
Gra87]. The well-known Grayson-Gage-Hamilton Theorem states that the curve shorten-
ing flow shrinks all simple planar curves to a point, making them asymptotically circular as
they approach the singularity and keeping them simple throughout the timespan of the evo-
lution [Whio2]. The motion also preserves the convexity of the curve and makes initially
non-convex curves convex in finite time.

Many of these classical results have been generalized for the mean curvature flow of hyper-
surfaces [Hui84], but they do not hold for the codimension-two problem discussed here. In
R3, the curve shortening flow curves may lead to local singularities before the length vanishes
even for embedded curves, and, in general, neither embeddedness nor generalized convexity
is preserved in this case.

This problem was first studied by Altschuler and Grayson in [Altg1; AG92], where the short-
term existence and uniqueness of the solution were shown. The article [Altg1] also classified
all types of singularities that may develop during the motion. Recently, properties of this flow
were studied in [MKB19; Khars; Cor16; Her2; MKB19; Lit23] and solitons of the flow were
discussed in [Alt+13].

In this chapter, we describe the relationship between moving curves and hypersurfaces via a
generalized comparison principle. Convexity of curves and their two-dimensional projections
during the flow is discussed in the second part and the third part deals with spherical curves.
First, we show that they obey the Avoidance principle and then discuss the behavior of several
spherical curves evolving at once.
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1.0 KNOWN PROPERTIES

Let us restate the definition and classical results of curve shortening flow for convenience.

Definition 1.0.1 (Curve shortening flow). Lez {T't }ye[o.4) witht > 0 be a family of evolving
curves. The curve shortening flow is defined as the following initial-value problem:

0yy = kN on S* x [0,1), (1.1)
Ylt=0 =0 in %, (1.2)

where o € C2(SY; R3) is the parametrization of the initial curve I
Remark 1.0.2. Although N is undefined for all points on Iy where k = 0, the right-hand side

term KN = 027 in (1.1) remains defined everywhere.

Let us first state the existence results for curve shortening flow in higher dimensional space
that are due to Altshuler.

Theorem 1.0.3 (Short-term existence, Theorem 1.3 in [AG92]). Let I'g be a closed space
curve. Then for some e > O, there exists a solution Iy to the curve shortening flow (1.1-1.2) with
the initial condition T on ST x [0, €).

The long term existence is also available for curve shortening in higher dimensional spaces.

Theorem r1.0.4 (Long-term existence, Theorem 1.13 in [AG92]). Let {T's }1e(o,1) be a solu-
tion to the curve shortening flow (1.1-1.2), where t > 0. If K is bounded on S L [0, 1), then
there exists an extension of this solution to S* x [0,t + €) for some € > 0.

Remark 1.0.5. Forlocal regularity theory consult [Braz 8] and [Whios].

The fundamental result for curve shortening flow is the Gage-Hamilton-Grayson theorem.
Theorem 1.0.6 (Gage-Hamilton-Grayson theorem [GH86; Gra87]). Suppose that {I't }1e[0.4)
is a_family of smooth, embedded, and closed curves in R2, evolving according to the curve short-
ening flow (1.1-1.2). Then the following properties bold:

1. The length of the curve L(T'y) is a non-increasing function of t.

2. The isoperimetric ratio is a non-decreasing function of t.

Moreover, under the curve shortening flow, any initial simple closed curve remains embedded
forallt € [0,t), becomes round ast approaches t, and vanishes in a round point ast tends to't.

This theorem however does not generalize to higher codimension. Examples and further dis-
cussion of different corner cases will be given throughout this chapter.

There are several tools to analyze long term behaviour and singularities of the curve shorten-
ing flow. For example, the entropy formula recently used in [Lit23] to study singularities:

E(Ty):= sup Do to (V(8,1), 1) ds.

20ER3 to>0 JT';
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Figure 1.1: Examples of Abresch-Langer shrinkers. Images adapted form [Hal12].

Here ¢4, 1, is the one-dimensional backwards heat kernel centered at (9, to):

2
1 _le—wgl

Duo.to (X, 1) = (d7tg) " 2e”  Ho

Due to Huisken’s monotonicity result, this entropy is monotone non-increasing under curve
shortening flow. The monotonicity formula from [Huigo] states that

d (v, N,
— o o ds = — AL VA
dtfpt(b“’t“ 8 L

2(to — 1)
Another classical result of Huisken is his comparison principle from [Hui98], which uses

L(T%) sin |:7Td2(ELI,‘:;, t)} 7

2

K+ Do to AS.

R(t) :=su
(1) = sup 0,0
where d¢(u,v,t) = ||y(u,t) — v(v,t)| is the extrinsic and d; is the intrinsic distance along
the curve. The theorem states that for embedded curves, the value of R(¢) is non-increasing.
This result can also be used for simpler proof [AB11] of Theorem 1.0.6.

1.00 EXAMPLES OF SOLUTIONS

Finding analytical solutions of solutions with given properties gives intuition about the be-
haviour of a particular problem and provides ideas of feasible theoretical results. In particular,
for the curve shortening flow, people studied solutions forming solitons, self-similar solutions
[Hal12] or ancient solutions [DHS10] which can be defined in time domain (—o0, ). This
subsection provides a quick overview of all the known examples.

Example List 1.0.7. Examples of solutions to the curve shortening flow.

Ex. s1. Stationary line. All straight lines are fixed points due to zero curvature. Lines also
represent a limiting shape for the ancient sine curve solution.

Ex. s2. Shrinking circle. The simplest non-trivial example is that of shrinking circles I'; =
0B, (1)- Because of the radial symmetry leading to constant curvature, this example
leads to an ordinary differential equation for the radius p which reads

p(t) = —p (1), p(0) = po,
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Ex. 53.

Ex. 54.

Ex. 55.

Ex. 56.

Figure 1.2: Examples of Yin Yang spirals. Images adapted form [Halz2].

where pg > 0 is the initial radius. This equation can be solved analytically as
1
p(t) = (pg —2t)2,
which is defined on (—o0, t) with the terminal time t = %pg.

Helix curve. Similarly to the shrinking circles example, the helix curve evolution
reduces to the following first-order nonlinear ODE for the radius

P+ () + )7 p(t) =0,
where £ is a fixed constant from the helix curve paramatrization
v(u,t) = (p(t) cosu, p(t) sinu, Eu)’.
Unlike the circle, this solution approaches the straight line in ¢ = c0.
Grim reaper. Another ancient analytical solution is the translating graph
v(u,t) = (u, F(u,t))7, F(u,t) = —logcosu +t
foru € (=%, ). This example in fact exists for all £ in (—00, 00).

Paperclip. Other known analytical examples are given implicitly. The following
compact solution, sometimes referred to as the paperclip [Hal12], is given by

Iy ={(z,y)" € (—%,%) x R: coshz = e "cosy}.

This solution is defined for t € (—0,0) and can be understood as two connected
Grim reaper curves that shrink towards a pointat ¢ = 0.

Ancient sine curve. Another implicitly defined solution similar to the paperclip is
the ancient sine curve or hairclip solution [Hal12] defined as

Iy = {(z,y)" e R*: sinhz = e "cosy}.

In this case, the solution exists for ¢ € R and is for all times non-compact. It asymp-
totically approaches a straight line as time approaches infinity.
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Ex. s7. Yin Yang spiral. Besides the shrinking solitons, there are also many rotating exam-
ples or examples that rotate and expand or shrink at the same time [Hal12].

Ex. 8. Abresch-Langer shrinkers. This family of planar solutions from [AL86] represent

the self-similar limiting shapes for curves with turning numbers larger than 1.

For a comprehensive overview with more examples of solutions in R3 see [Alt+13]. For other
recent developments see [DHS10; Hal12; AY18; Zha+22].

1.0.1 EVOLUTION OF GEOMETRIC QUANTITIES
This subsection gives an overview of known evolution equations for the curve shortening
flow. These technical preliminaries are necessary for most of the results in this chapter.

Lemma 1.0.8. The evolution equations for the local geometric quantities:

2

Org = —gK”, (1.3)
Oik = 0%k + K® — K72, (1.4)
0T = 2K*T + 02T + 0, (27(}7’“) . (1.5)

Lemma 1.0.9. The time evolution of the Frenet frame is given by

T 0 0sk KT T
O |N|=|-0sk O o |- |NJ, (1.6)
B -kt —¢ 0 B

where bottom right entries are p = OsT + 2T 5*7“
Lemma 1.0.x0. The time evolution of important global quantities is

iL(Ft) = —J % ds,

dt r,
i HdSZ—J kT2 ds,
dt I I
i Tds :‘[ K27 ds.
dt Ft Ft

The global evolution equations can be used to assess long-term behaviour of the flow.

Proposition 1.0.11. The length of the curve under the curve shortening flow can be bounded
as

L(Ty) < (L*(To) — 87%t) % (1.7)

Proof. Using Proposition 1.0.10 and the Cauchy-Schwarz inequality yields

d 1 2 A

— L) = — k2ds < — [f ﬁds] < — , 1.8

a M) L L(Ty) |, L(Ty) (1.8)
where the last inequality is due to the Fenchel theorem. O
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Note that if T'; is knotted for all ¢ € [0, ) then the estimate (1.7) can be improved to
L(Ty) < (L*(Ty) — 167%) 73,
When I'; is knotted, one may use the Milnor-Firy theorem instead of the Fenchel theorem
and obtain —8 instead of —4 the right hand side of inequality (1.8).
Corollary 1.0.12. The maximal time of existence can be bounded as

1
t < —L*(To).
- 8n? (To)
The right hand side can be halved when Iy remains knotted.
Remark 1.0.13. In the case of planar curves, one can also consider the evolution of the enclosed

area A(L'y) given by the following, surprisingly simple, formula

1
A =5 | mas

Using the Green’s Theorem one can show that

d

Lary) = - .
” (T) Lt/@ds

For embedded closed curves, the right-hand side is —2m. Thus the area A(T'y) = A(Ty) — 27t
and vanishes art = iA(Fo)- Furthermore, the isoperimetric ratio satisfies

it ey | =2 [ e e

Using this formula and the Bonneson inequality one can show that for an initially convex curve,
the isoperimetric ratio approaches 4w ast approachest. The isoperimetric inequality implies that
the curve must approach a round circle in the limit.

Further maximal time estimates can be achieved by analyzing the curvature.

1.0.2 CURVATURE ESTIMATES

This subsection uses the Weak maximum and minimum principle for scalars from [Topo6]
to estimate the evolution of curvature. We begin by restating the classical theorem.

Proposition 1.0.14 (Theorem 3.1.1 from [Topo6]). Lett € [0,t] witht < 0. Ler X (t) be
any smooth real function of time, F': S* x [0,t] — R. Supposew : S* x [0,t] — R solves

Oiu < %u + Xosu + F(u,t).
Furthermore, let o € R and consider ¢: [0,t] — R such that (0) = «and
& = Fo(),1)
Sforallt € [0,t]. Ifu(-,0) < o, then u(-, t) < ¢(t) forallt € [0,t].
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Remark 1.0.15. Proposition 1.0.14 also holds if we replace all < with >. This alternative
alternative result is called the weak minimal principle, see Corollary 3.1.2 in [Topo6].

To point out the differences between the curvature shortening flow in R2 and R3, we first
state the curvature estimates for the case of planar curves.

Proposition 1.0.16. Let {T's },e[0,4) with the terminal timet > 0 be a family of planar curves
evolving according to the curve shortening flow. Furthermore, let us define

Qm 1= Min k(u,0), app = Lrézgl(m(u,O). (1.9)

Then for all t € [0,t] and all u € S* we can bound the curvature from both sides as
(1 =2028)77 < K(u,t) < aar(l — 2a2,8) 2. (1.10)
Proof. For planar curves, the evolution equation for curvature reduces to
Otk = 6§n + k3.
In this case, we may set X (¢) = 0and F'(u, t) = u3, which leads to
#(t) := a(l — 2a°)73,

with & being o, or aipz. The inequality chain (1.10) is then obtained by application of the
minimal and maximal principle from Proposition 1.0.14 and Remark 1.0.15. O

The lower estimate of curvature indicates that it must blow up at a finite time. Moreover, the
following statement shows how this blow-up time can be upper bounded.

Corollary 1.0.17. The terminal timet of the planar curve shortening flow can be bounded as
t < (200,) 7",

where Oy, 1s the minimum curvature of the initial curve from (1.9).
Proof. The statement follows from the left inequality in (1.10). O

Another, important ramification of inequality (1.9) is the preservation of convexity for planar
curves under the curve shortening flow.

Corollary 1.0.18. Let L'y be a planar curve evolving according to curve shortening flow with a
convex initial condition, i.c. the signed curvature r;(u,0) = 0 forall u € S1. Then

k(u,t) =0
forallu € S* and t € [0,t). Thus, the convexity of the initial curve is preserved.

Proof. The statement follows from the left inequality from (1.10). Initally, non-negative
curvature will only increase in time. O
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Remark 1.0.19. Anotherimportant inequality involving the curvature is the Hamilton-Harnack
inequality from [Hamgs |. Their theorem states that assuming L'y is convex then

ok (0sk)% 1
ar _ ML~ <o
K K2 2t

This result is useful for uniqueness proofs for translating solitons [Hamys J.

The application of the maximum principle to the three-dimensional case is not as powerful.

Proposition 1.0.20. Let {I't }yeqo,¢) with the terminal time t > 0 be a family of space curves
evolving according to the curve shortening flow. Furthermore, let us define

app = r%alxm(-, 0).

Then forall t € [0,t] and all u € S we can upper bound the curvature as

k<ap(l-— 20[?\475)7%.

Proof. As the additional term — k7?2 in (todo) is always non-positive, we may upper bound
expression for the curvature derivative 0; to get the following inequality

Ok = 0%k + K — k1% < 2K + K3,
which allows us to use Proposition 1.0.14 as in the proof of Proposition 1.0.16. O

Remark 1.0.21. For estimates of curvature derivatives see e.g. Theorem 1.25 in [Has16].

As we have not established the curvature lower bound as in Proposition 1.0.16. This result
does not lead to a straightforward estimate of terminal time. To achieve this, we explore new
version of the comparison principle in the next Section.

1.1  GENERALIZED COMPARISON PRINCIPLE

As suggested in the previous sections, the long term behaviour of the curve shortening flow
in higher codimension is not as straightforward as the planar case. Also, some of the tooling
used for planar analysis do not generalize to space curves. One such tool is the avoidance or
comparison principle, see Theorem 1.0.6. As the notion of inside and outside loses meaning
for curves in space, the classical formulation of this result is not applicable.

This section describes results from [MKB19], which expand the comparison principle to
higher codimension by bounding the space curve by moving hypersurface. This leads to al-
ternative proof for some of the known results for spherical curves but also allows us to obtain
new knowledge about the long term behavior, among others by obtaining a new upper bound
for the maximal time of existence.
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Figure 1.3: Diagram depicting y(u, t) and @(t).

1.1.0 MOVING HYPERSURFACES

For the purposes of this section, we introduce the notion of moving hypersurface in the nota-
tion from Chapter 5 of [Kimo8]. Consider a family of closed oriented C 2_class hypersurfaces
in m-dimensional Euclidean space R™, denoted by {Z¢ }4¢[0,¢2) with t= > 0.

Since Zy is oriented and closed manifold at each time ¢, there are two disjoint open sets Q:—r
such that Q; U Q; = R™\Z,. The sign convention of 0 determines the direction of the
unit normal vector denoted by v. For every time ¢ € [0, ¢=) and point y € =y, we set v(y, t)
to point outward of ;.

Let V=, denote the surface gradient on Z; and W denote the Weingarten map given by

W(y7t) = *(VEtl/l, .. -,VE,,Vm)(y,t)-

We further define the principal curvatures K1, . . . , K;—1 which are the eigenvalues of the
Weingarten map W with (e;,v) = 0,ic. We; = kie;fori = 1,...,m —land Wy =
0. Note that {e1,...,€m_1,7} becomes an orthonormal basis of R (see Chapter 2 in

[Kimo8] for further details).

Remark 1.1.1. Bychanging the orientation of By, i.e. swapping Qj and QY , we not only affect
the direction of the normal vector v but also the sign of the principal curvatures K1, . . . , K. For
example, if we consider 2y = 0B and Q = B, where B € R™ is a unit ball, the normal
vector v 1s pointing towards the center of B and all principal curvature are equal to 1.

Following the notation in Chapter 5 from [Kimo8], we say that {=; };¢[0,¢) is a C%!.class if
v € C1(M;R™), where we formally define M as the set

M = U 2 x {t} cR™ x R.
te[0,t)
Finally, the time evolution of {Z }4¢[0,+2) is given by its normal velocity functional

V(IE, t) = <Zl(t)7 I/(SC, t)>7

where z is a differentiable function of time ¢ with initial condition z(0) = z and such that
z(t') € Zy for all ' from some neighborhood of t.
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1.1.1 SIGNED DisTaANCE FUNCTION

We analyse the relationship between the evolving curve I'; and the moving hypersurface =
by means of the signed-distance function ¢. For point z € R™ and time ¢, we define ¢ as

dist(z,=;)  forz e Qf
d(z,t):= <0 forz e 5
—dist(x,Z¢) forxz ey

For readers’ convenience, we introduce the following notation depicted in Figure 1.3:

y(ua t) = argmin Hr)/(uat) - Z”7 (I'II)
ZEZ;
u(t) = argr;llin Iy(u,t) = y(u, t)]. (r.12)
Uue

With the help of this notation, we recall the properties of signed distance functions and sum-
marize them in the following lemma. For more details, see Chapter 3 in [Kimo8].

Lemma 1.1.2. When =y is sufficiently smooth, there exists g > 0 such that when
dist(y(u,t),Zt) < g

for some parameteru € St and time't € [0, 1), then the helper function y(u, t) is unique and
the derivatives of the signed distance function ¢ can be expressed as

Vo(y(u,t),t) = —v(y(u,t), 1), (1.13)
_ S ’ii(y(uvt)J)
B0 = 2 T w0, Dy 0,10 )

i=1
Ho(y(u,t),t) = (T+ ¢(y(u, )W (y(u, 1), £) 7 W (y(u, 1), 1), (1.15)
at¢('y(uvt)’t) = U(y(uvt)at)~ (1.16)

where H ¢ is the Hessian of ¢ and 1 is the m by m identity matrix.

Proof. Proofs of all formulas as well as other details concerning signed distance functions of
hypersurfaces can be retrieved from Chapter 3 of [Kimo8]. O

1.1.2 COMPARISON THEOREM

Before stating the generalized comparison theorem, we define an auxiliary function p, de-
scribing the minimal distance between the curve I'y and the hypersurface 2y, as

p(t) := min dist(y(u,t), ). (1.17)
ueS1t
In simpler terms, this function can be rewritten as

p(t) = dist(y(a(t), 1), =) = |y(a(t), t) —y(a(t), ).

We can now state the main result of this Section.
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Proposition 1.1.3 (Main theorem from [MKB19]). Let {T't}se0,4p) with tr > 0 be a
family of space curves moving according to the curve shortening flow equation (1.1-1.2) and
let {Z¢ }veqo,te) witht= > 0beaC 21 dlass moving hypersurface with V. satisfying

V(y,t) = max k;(y,t) (1.18)

1<i<m

forallt € (0,tg) and all y € Z,. Assume that the initial curve T lies inside Qar and the

parametrisation o is from C2(S; R™). Furthermore assume that there is o > 0 such that,
forallu e S* andt € (0, tz) for which

0 < dist(y(u,t), =) < eo

there exist y(u, t) and U(t) and equations (1.13-1.16) are satisfied. Finally, assume that both
the normal velocity V of =y and the curvature K of 'y are uniformly bounded. Then

p(t) = min{eg, p(0)}. (1.19)
forall t between 0 and min{tr, t=}.
Proof. Let us abbreviate ¥(t) := y(@(t),t) and (t) := y(@(t),t) and for e > 0 denote
I, := {t € [0, min{tr,t=}) : dist(¥(¢),Z;) < e}

Lemma 1.1.2 implies the existence of €y > 0 such that the formulae (1.13-1.16) hold on the
subset I,. As ¢(7y(+,t),t) attains its minimum at %(¢) and is C2class, its first derivative is

0= T [¢(7(ua t)v t)] |u:ﬁ(t) = <V¢(’7(f), t)a au’Y(ﬂ(t)7 t)> (I.ZO)

and the second derivative satisfies the following inequality

0 < & [o(y(u, ), )] luatey = & (VO (1, 1), 1), 2uy(u 1)) [u—ace
= (Ho(7(t),1)0u <a<>> < (£),6)) + {Vo(3(t), 1), 02(a(t), )y, (1.21)
where 0y 7y(u, ) = [ 0uy(u, )| T (u,t) and
02y (u,t) = 0y (u, )| 2ullOury(1a, )0y (s £) + |0y (ua, ) [2E (1, £)N (u, 1).
From (1.13) and (1.20), it follows that (T(w(t), t), v(y(t), t)) = 0. Moreover,
(Vo). £), 02y (ut), 1)) = —|our(a(t), )| (), 1), (KN)(a(t), 1)) (1.22)
Combining the above formulate (1.22) to (1.21) yields

CHe((1), )T (u(t), 1), T(u(t), t)) = w(y(t),t), (KN)(u(t), ). (1.23)

In the following, we show that p from (1.17) is Lipschitz continuous in I.,. From the defi-
nition of the closest point parameter @(t), we obtain the following inequality

p(t2) — p(t1) = ¢(y(u(tz), t2), ta) — G(y(ulty), t1),t1)
< o(y(u(ty), ta), t2) — d(y(u(ts), t1), 1)
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The derivative & ¢(7(u, ), ) can be upper bounded as

G0V (u, 1), )] = [(Vo(y(u,t),1), dev(u, 1)) + Qe (u, 1), 1)]
< [KVo(v(u, 1), 8), K (u, )N (u, 8)) | + |v(y(u, 1), 1)].

Furthermore, the properties of ¢(7y(u, t), t) imply an existence of a positive constant C' > 0
such that for a fixed parameter value u € S' and for all times ¢ from the interval 1., we get

[So0 0.0l < sup [ max K ()] + max (0] | = C.
te[0,min{tr,tz}) b ueS?

which implies that |p(t2) — p(t1)| < C|ta —t1|. We now use the Rademacher theorem (see

e.q. [EG92]), which ensures the existence of a subset N' < I, with zero one-dimensional

Lebesgue measure (N) = Osuch that forallt € I\ =: I, we can write

) _pt+h)—p(t) . p(t) —p(t—h)
- ATR R AP <
PO BT T ¢
For time ¢ from the new interval I, ¢, and for small value h > 0 we get
p(t + h) - p(t) < Qb(r}/(a(t)ﬂt + h)v i+ h) - ¢(7(a(t)7 t)a t)v (1-2'4)
In the limit as & approaches 0 from above, the above inequalities (1.25) and (1.24) lead to
p/(t) < %qﬁ('y(u, t)v t)|u:ﬁ(t)7 (1-26)
pl(t) = %¢(7(uv t)a t)|u:ﬁ(t)' (1-27)

Thus we arrive at a formula for p’(¢) that can be further rewritten as

P(t) = 5o, t),0)]u=g
= (Vo(3(1),1), dry(a () t)) + 0:p(3(t), 1)
= —w(y@),t), (KN)(u(t), 1)) + v(y(t),t).
(¢

(
Using (1.23) and the assumption (1.18), we can lower bound ¢’ (¢) by
P(0) > max mi(G0),1) — CHOG), OT@. 0. TED. D). (128)

)

The second term in (1.28) can be rewritten as the following sum

CHO((0). O (a(2) 1), T(a(0). 1)) = <1+¢ L . )

_ Z /@Z(y(t),t)<T(a(t),t),el(*(t),t)>2
= L+ o(y(t), )ks(y(t),1)
where part of the summand can be upper bounded from non-negativity of ¢(%(t), t) as
ri(y(t),1)

1+ 6(3(0), )rs (9(0), 1) < Ri(g(t),t) < max k;(y(t),t).
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Figure 1.4: According to Corollary 1.1.4, the initial curve I'g surrounded by disjoint spheres
will remain disjoint with all of them as they simultaneously shrink according to the curvature
shortening flow and the mean curvature flow, respectively.

As{ei,...,em—_1, v} formsan orthonormal basis, we get

m—1
OE [1 - <T(u(t),t),ei(y(t),t)>2] max #; (§(t), 1) = 0.

1<i<m

For convenience, define a positive constant
¢o := min{eg, p(0)},

where p(0) is positive from the assumption I'y < Q. For contradiction, assume there is
t1 € (0, min{tr, t=}) such that p(¢1) € (0,¢o) and p(t1) < p(t) fort € [0, ¢1]. Since the
function p is continuous on [0, min{tr, t=}), there exists £y € [0, t1) such that

p(t1) < p(to) and p(t) < egfort € [to,t1]. (1.29)

Since p’ = 0 almost everywhere on [tg, t1], its integral must be non-negative and thus

ty

pltr) — plto) = j Pyt > 0.

to

As this contradicts equation (1.29), we conclude that p(t) < ¢o. This proves the original
statement (1.19). O

1.1.3 RAMIFICATIONS
By choosing different moving hypersurfaces Z; to bound the motion of space curves from

inside or outside, one can use Theorem 1.1.3 to uncover the following insights about the
long term behaviour of space curves during the curve shortening flow, see Figure 1.4.
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Corollary 1.1.4 (Corollary 1 from [MKB19]). Let L'y satisfy (1.1-1.2) with the initial condi-
tion T satisfying Ty N 0B(xg,r0) = & forsome xg € R™ andrg > 0. Then

I'(t) noB (azo,\/ ré — Qt) =0.

Jor all t between O and t. Furthermore, if 'y < B(xq, 1), the maximal time of existence t is
upper bounded by 313

Proof. Consider the following family of moving hypersurfaces

with the orientation defined by position of I'g in such a way thatI'y < QS’ . The hypersurface
E¢ evolves with normal velocity

SIS

v= max k; = +(r2 —2t)72,
1<is<m

with the sign determined by the orientation of =¢. The statement trivially follows from The-
orem I.1.3. O

Theorem 1.1.3 gives us an alternative proof of the fact that spherical curves remain spherical
under the curve shortening flow. The original proof can be found in [He12] and several
ramifications of this result have been described in [Cor16; Khars].

Corollary 1.1.5 (Corollary 2 from [MKB19]). Let Iy satisfy (1.1-1.2) with the initial curve
Lo which lies in a sphere Ty < 0B (g, o) with center xg € R™ and radinsro > 0. Then

I'y coB (xo, Vr% — 2t)
for all t between 0 and the terminal time t.

Proof. Using Corollary 1.1.4 we can bound I'; between two concentric spheres
Iy cB(mO,VTS+€—2t)\B (xo, r%—s—?t),

where 0 < & < r3 and the time ¢ lies between O and min {¢, 1 (r§ — £)}. Letting € approach
0 from above proves the statement. O

Furthermore, we show how Theorem 1.1.3 can be used with non-spherical surfaces Z;. In
this case, we assume the surface is a boundary of a convex set, see Figure 1.5, but one can also
prove other variations of the following statement.

Corollary 1.1.6 (Corollary 3 from [MKB19]). Let Iy satisfy (1.1-1.2) with the initial curve
Ty < Q, where Q < R™ is a bounded convex domain with a C2-class boundary 0). Then

Vie[0,t): Ty c Q.
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t=20 t>0

Figure 1.5: Corollary 1.1.6 states that Iy stays inside of the convex hull of the initial curve I'.

Proof. As ) is convex, we can choose a trivial static hypersurface 2; := 02 with the normal
velocity v = 0. In this case, all principal curvatures of 0€2 are non-positive and thus the
assumption (1.18) from Theorem 1.1.3 is trivially satisfied. O

Finally we apply Theorem 1.1.3 to curves bounded by a shrinking cylinder.

Corollary 1.1.7 (Cylindrical Estimate). Let the family of compact space curves Iy satisfy the
curve shortening flow (1.1-1.2) with the initial curve I'q which lies inside a cylinder

Cppo = {z €R®: o —p|* = (& —p,0)* < g5},

where p,v € R> are both constants and v is a unit vector. Then Ty will remain inside the
1

oylinder C,, ., (1), where the radius shrinks in time as p(t) = (p§ — 2t)2.

Land

k2 = 0. We can thus apply the same argument as in Corollary 1.1.4 and prove the statement

using Theorem 1.1.3. O

Proof. The moving hypersurface =; = 0C), ,, ,(¢) has principle curvatures k1 = p(t)~

Remark 1.1.8. Using Corollary 1.1.7, one can further bound the maximal time of existence for
curves inside a cylinder in the same way we did with spheres in Corollary 1.1.4. It is important
to note that Corollary 1.1.7 does not work for non-compact curves. For instance, the Grim reaper
solution from Ex. 54. or the shrinking belix curve from Ex. 53. exist forever and do not stay
inside any cylinder that vanishes in finite time.

We end this subsection with another upper bound for the maximal time of existence ¢ that
requires the following definition.

Definition 1.1.9 (Curve diameter). The diameter of space curve I is defined as
diam(T") = 2inf{p: 3z € R* T < B,(z)}, (1.30)
where B,,(x) is a ball of radius p centered at the point .

Finally we state a terminal time estimate obtained from the generalized comparison principle.

Corollary 1.1.x0. Let {T't }1e[0,1) satisfy (1.1-1.2) with the initial curve To. Then we get

t < %diam2(F0)
Proof. The result is directly implied by Corollary 1.1.4. O
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Figure 1.6: Diagram depicting cylindrical estimate from Corollary 1.1.7.

1.2 CoONVEXITY CONDITIONS

The curve shortening flow in R2 preserves convexity as we demonstrated in Corollary 1.0.18.
The same is true for the mean curvature flow in higher dimensional spaces. However, with
increasing codimension, the situation becomes more complex.

1.2.0 CoNVEX SPACE CURVES

Results from this section can be found in [MB2o], where the following definition of con-
vexity is proposed. Although global convexity is not commonly defined for space curves, we
define this notion using Minkowski functional.

Definition 1.2.1 (Definition 3.1 from [MB20o]). Fora convexset K < R"™ and pointy € R",
let M Iy< : R™ — R* denote the Minkowski functional prescribed by

MY (x) :=inf {AeRT: $(z—y)e K}.
forall x € R". We say that a closed curve I is convex if there exist y € R™ such that

Y =
M| =1,

where C(I') is the convex bull of the curve T, i.e. the smallest convex superset of T.

The convexity defined above is in general not preserved during the curve shortening flow.

Proposition 1.2.2. The curve shortening flow in R? does not preserve convexity.

Proof. We prove this statement by direct construction of counterexample (see Example 3.2
from [MB2o]). Consider the initial curve I' given by the following parametrization

cos(au?’ + fu) 42 7342
Yo(u) := sm(om‘l3 +pu) |, a:= m, B = m, (1.31)

sinu — 3 sin(2u)
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forallu € S'. One can show that this curve is convex according to Definition 1.2.1, butit will
lose its convexity while evolving according to the curve shortening flow. Since the curvature
of I'g at the point u = 0 is greater than its curvature at 4 = w and © = —w, where

wi= (7% +2)3 (7 +2)77,
(0, t) departs from the line segment C({y(—w, t), y(w, t)}) which lies on the boundary of
C(T'y). Thus Iy will stop being convex immediately after ¢ = 0. O

We now know that the convexity proposed in Definition 1.2.1 is not preserved. But we will
later present a result stating that the convexity of their orthogonal projections is preserved.
To achieve that, we need to prepare several lemmas.

1.2.1 STAR-SHAPED CURVES

The following two lemmas are used in the proof of Proposition 1.2.6. Lemma 1.2.4 uses the
notion of star-shaped curves, which are boundaries of star-shaped sets. We call a closed curve
I'; star-shaped if it bounds a star-shaped region. Let us present a simple sufficient condition.

Lemma 1.2.3 (Star-Shaped Curve). Considera closed planar curve Ty such that thereisx € R?
such that y(u, t)—x and T (u, t) are linearly dependent forallu € S*. Then T isstar-shaped.
We will use the fact that small variations of convex curve will still be star-shaped. The follow-
ing lemma formalizes this idea.

Lemma 1.2.4. Let {U't }1eq0,4) be a family of dlosed planar curves such that Uy is convex with a

Cl-class parametrization. Then there existsto > 0suchthat Ty isstar-shaped forallt € [0, to).

Proof. For a fixed vector « for the interior of the initial curve I, let us define

@(Uat) = H’V(uat) - .’EH - |<’7(uvt) - iL’,T(’LL, t)>‘

for all (u,t) € S* x [0,t). Note that this functional is continuous from the assumptions
and, furthermore, ¢ is non-negative due to the Cauchy-Schwarz inequality. Since the initial
curve is convex, ¢ > 0int = 0, it is also star-shaped with respect to any point inside. Thus
there is g € [0, 1) such that z is in the interior of I'; and

forallu € ST andt € [0, ¢o), because ¢ is continuous. Thus the curve I'; is star-shaped with
respect to the point x forall ¢ € [0, ¢o). O

1.2.2 ORTHOGONAL PROJECTION

Note that Lemma 1.2.4 imposes regularity assumption on the parametrization vy but it does
not require the curve to follow the curve shortening equation (1.1-1.2). One more techni-
cal lemma is required before we prove the preservation of projection convexity. This lemma
shows the relationship between the original and projected normal vectors.
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Lemma 1.2.5. Let P € L(R3) be an orthogonal projection of rank 2, i.e. dimRanP = 2.
For a space curve L, denote the projected curve P and its curvature kp. Letu € S L denote any
fixed parameter such that the projected curve satisfies |0, Py(w)|| > 0 and kp(u) > 0. Then

(PN (u), Np(u)) > 0,

where N () is the principal normal vector of I" at the point ~y(u) and Np (w) denotes the nor-
mal vector of the projected planar curve PT at point Py (w).

Proof. Note that the positivity of £p(u) > 0 also implies the positivity of £(u) > 0 and
that both IV and Np are well defined at u. We thus can express

1 1 05105 P >
PN,Np) ={ —?Pry, — 0Py — — 0, Pv ),
(PN, Np) < L -~ e e v AL

where we omitted writing the parameter u for better readability. Using the Cauchy-Schwarz
inequality, we immediately obtain the non-negativity condition (PN, Np) > 0, because

kp 0P| (PN, Np) = [02P[?0sP|* = (0P, 02P7)* = 0.

The equality (PN, Np) = 0 would occur only if there was & > 0 such that 02Py =
05 Py. This implies that 02Py = 0, P~y with 8 = ag + 30, 9°. Moreover,

kpNp = [0PY 2Py — [0uPy] 2 0ull0uPy]0uPy.
Altogether, this leads to the following formula for the curvature xkp of the projected curve:
Kp = 5”57”)’7”72 - HauP’YH74 <au7>% 63P7> =0,

which contradicts the assumption £ > 0 and thus the inequality is strict. O

1.2.3 CONVEX PROJECTION

From the counterexample given in Proposition 1.2.2, we know that the curve shortening flow
in higher codimension does not preserve convexity introduced in Definition 1.2.1. The fol-
lowing proposition states that the convexity of their orthogonal projections is preserved.

Proposition 1.2.6 (Proposition 3.5 from [MB20]). Let P € L(R?) be an orthogonal pro-
Jection of rank 2 and let Iy be a space curve with a convex projection PLo. Assume that the
parametrization Py(-,t) of the projected curve Py is regular for all t € [0,t). If Ty evolves
according to the curve shortening flow from T, then PT'y remains convex for all t € [0, t).

Proof. For a contradiction, assume that PI'; loses its convexity during the evolution. We will
formalize the proof using a functional 1: S* x [0,£) — R{ defined as

Y(u,t) := dist (Py(u,t), 0C(PLy)).
and another helper induced function of time ¥: [0,) — R{ given by

U(t) := Llé%}liw(u,t) (1.32)

The proofis structured in the following way. It is divided into proofs of four individual steps
labeled (A), (B), (C), and (D). The combination of statements leads to the contradiction.
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(A) (-, ) is continuous on S* for each time ¢ in [0, ¢).

Since (-, t) is a continuous function, we know that for every ¢ € [0,£),u € S'ande > 0
there exists a positive constant § > 0 such that |v — u| < 0 implies [y(v,t) — y(u,t)| < e
forall v € S1. We can estimate the value of 1 at v by the following expression

¢(U7t) = ;_Ilf H'P’V(U,t) - Y“ < H,P’Y(’U,t) - ,P’Y(uvt)H + Inf H,P’Y(u7t) - YHu
€g Yeg
where we denote G := 0C(PT';) for convenience. From the continuity we have

Y(,1) < [v(v, 1) = y(w, )] + Y(u,t) <e+(u,t).
By the same argument, we get ¥(u,t) < € + 9¥(v,t) and thus |[¢(v,t) — P(u,t)| < €
when |v — u| < 4. This implies the continuity of ¥(-, £) on S*. Note that the continuity

also confirms that ¥ given by in Equation (1.32) is defined properly, because the maximum
is indeed attained. This function will be relevant because it vanishes iff PI'; is convex.

(B) The function ¢ is continuous on the whole domain [0, t).

We aim to show that forall ¢ € [0,¢),u € S* and € > 0, there exists § > 0 such that for all
t' € [0,t) andallv € S*, |v — u| < & implies |1 (u, t') — 1 (u,t)| < e. Since G is compact,
it contains Y such that we can express 1 (u, t) i the following form:

(u,t) = inf [Py(u,t) = Y| = [Py(u,t) = Y. (1.33)

For t’ close enough to t, the set G is close to G’ := dC(PI'y) in terms of the Hausdorff
distance. This means that thereis Y’ € ¢G’ such that |Y”’ — Y| can be arbitrarily small if ¢/
and ¢ are close enough. Then we can rewrite 9 (u, t') in the following form

Yl t') = mf [Py, t) =Y < [Py(u,t) - Y|
€ ’
and further bound the expression by 1 (u, t) and the positive constant € as

lu,t') < [Py(u,t') = Py(u, )] + [Py(u,t) — V| + |7 - 77|
=y, t') = 3 O + 1 = 77 + (1) < & + wlu,b).

Similarly ¢ (u, t) < € + ¥(u,t'). Therefore |1(u,t’) — ¥(u,t)| < ewhen |t' —t| < 6.

We now move to the function ¥ and define the time when I looses its convexity as
to :=inf{t € (0,t) : ¥(¢) > 0}. (1.34)

Note that the set {t € (0,¢) : ¥(¢) > 0} is nonempty by the assumption.

(C) The function ¥ vanishes at the time ¢.
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Assume that U(tg) > 0. Since U is continuous on [0, t), there is € > 0 such that
U(t) > 2W(tg) >0

forallt € (tg — e, to), which contradicts the definition of ¢ from (1.34).
(D) Thereisty in (to,t) such that ¥(¢) is non-increasing on (to, t1).

Since the projected curve PI'; is regular and P is a linear operator, the regularity of the
parametrization Py is at least C L. This allows us to use Lemma 1.2.4 and assume the exis-
tence of t1 € (o, ) such that PT'; is star-shaped for all t € (¢, t1).

For a fixed time ¢ € (%o, t1), the function 9 (-, t) reaches its maximum at the point denoted
by us € St Letuy, us € St such that uy € [u1,us] and

Py(u,t) € OC(PTy) foru € {u1,us},
P’Y(U,t) ¢ 6C(’Pft) foru € (ul,U3).

Consider orthogonal basis {e1, e2} of RanP such that the ey is parallel to Py(us,t) —
Pry(uq,t) and Py(uz,t) — Py(uq,t) has points in the positive direction of e5. Since PT';
is star-shaped, no small kinks can develop along the curve and we can express () as the
difference between the e5 coordinate of Py(us, t) and Py(uq,t).

If kp(ug,t) > 0, Lemma 1.2.5 and the motion law (1.1) imply that the es coordinate of
Py(ug,t) is non-increasing in time. Similarly, when x£p(u1,t) > 0and/or kp(us,t) >
0, the e coordinate of Py (uq,t) and/or P+y(us, t) is non-decreasing, respectively. When
kp = 0atug, ug or ug, the ez coordinate of the corresponding point remains constant as
the motion takes place only in the e; direction.

In all scenarios, the distance between Py (ug, t) and 0C(PT';) cannotincrease and thus V(%)
cannot increase either. This proves the last statement (D).

Putting together the previous statements (B), (C) and (D) yields the following inequality
0<T(t) < T(ty) =0

for all ¢ in (%o, t1), which implies that ¥(¢) = 0 for all ¢ in (£o,¢1). This contradicts the
definition of ¢( in (1.34). Thus the convexity of PT"; must be preserved forall ¢ € [0,¢). O

1.3 SPHERICAL CURVES

The space curve I is called spherical if there exists a point € R? and a positive constant p
such that |z — y|| = pforall y € I'. Their behaviour during the curve shortening flow has
been studied in [Her2; MKBr9] and some consequences were discussed in [Khars]. This
section describes our results related to spherical curves from [MKB19].

1.3.0 SPHERICAL INVARIANCE
Before further analysis, one must establish the invariance of sphericity during the flow. It

has been shown in e.g. [Her2] and an alternative proof is also in Corollary 1.1.5. Among the
ways to show this property, the most straightforward and enlightening proofis the following.
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Lemma 1.3.1. The curve shortening flow in R? preserves spherical curves.

Proof. Let x € R3 be the center of sphere dB(z, po) on which the curve I'g lies. Then
lly — | = 2y —,07) = Ky —x,037)
= 205(y — 2,057) = 2[0s7|* = 20,(y — 2, T) - 2.
If T'; is spherical and centered around the point z, then |y — | does not depend on s and
0=0sly— = = 2(y —2,T).

Thus, provided that the initial curve lies in 0B(z, pg), the time detivative d;[|y — x| does
not depend on u € S* either and the sphericity is preserved.

Remark 1.3.2. The proof of Lemma 1.3.1 gives us for free the evolution of the spherical radius

p(t) = (o5 —20)%,

because p'(t) = —p~1(t). This can also be deduced from the analytical solution of the great
circle of the shrinking sphere, which follows the same equation.

1.3.1 HEeaT EQuaTION LEMMA

We aim to show that spherical curves share similar long term characteristics with curves evolv-
ing in plane. Specifically, we will generalize the avoidance principle and present its ramifica-
tions. We will do so by generalizing the classical proof from [GH86], but several technical
obstacles must be resolved first.

Following the proof from [GH86], let us define the functional ¢p: T2 x [0,1) — R* as
¢(u1,u2,t) = H’Y(U%t) _7(u1at)”27 (1.35)
where T? = S' x S' is the 2-torus.

Lemma 1.3.3. Let I be a spherical space curve. Consider the functional ¢ from (1.35), but
without the time dependency. If ¢ = (w1, uz) bas a local minimum at (u1,us) € T? and
U1 # U, then the tangent vecrors T (w1 ) and T (ug) are collinear.

Proof. The functional ¢ has an extremum at (w1, u2) and thus its gradient vanishes:

L [Gun) = y(ua), Jewy () T (w)y] [0
Volus,ug) =2 [<7(uQ) — y(ur), ||aw(uQ>|T<u2>>] - [0] '

Since we only consider regular curves the parametrisation rate 0,7y is positive everywhere and
the vanishing gradient implies the following orthogonality conditions:

(T (u1),y(ug) = ~(u1)) = (T(ug), y(uz) = y(ur)) = 0.
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Moreover, with 2 denoting the center of the sphere, (1) — 2 and y(u2) — « are orthogonal
to the tangent plane of the sphere at the point y(u1) and y(uz), respectively. Thus T'(u1)
and T'(ug) are orthogonal to y(u1) — x and y(u2) — z, respectively. Together, we have

T(uy) € span(y(uz) —(u1))* A span(y(ur) — 2)*,

T(uz) € span(y(u1) —v(uz))" N span(y(uz) — z)*,

where span Q and QO denote the linear span and the orthogonal complement of the set €2,
respectively. From the linearity of the inner product, we have

T(uy), T(ug) € span(y(u1) — ) A span(y(ug) — z)*. (1.36)

Since u; # ug, the intersection of span(y(u;) — 2)* and span(y(ug) — x)* from (1.36)
is a one-dimensional affine space, which proves the original statement. O

Remark 1.3.4. The statement of Lemma 1.3.3 is specific to spherical curves in R® and does not
generalize to spherical curves in bigher dimensional spaces. As a counterexample in dimension
4, consider the following curve with the parametrization

sin(cos u)

cos(cos u) sin(sin(2u))

(W) = cos(cos u) cos(sin(2u)) Cos(lé sinu) |’
cos(cos u) cos(sin(2u)) sin(5 sin ).

One can verify that this curve lies not a unit 3-sphere and yet the functional ¢ achieves its local
minimum at the point (U1, uz) = (g, 37”) but {T(u1), T(ug))y = 0.

Another lemma we will need is a straightforward generalisation of result from [GH86] to our
codimension two setting and works even for non-spherical curves.

Lemma 1.3.5 (Generalization of Lemma 3.2.2 from [GHS86]). The functional ¢ defined in
(1.35) satisfies a strictly parabolic partial differential equation related to the beat equation:

Ot — N5 = —4, (1.37)
where the arc-length Laplace operator A is formally defined as Ay = 02, + 02,
Proof. Using 0y = kNN and the chain rule leads to the time derivative
Ord(ur, ug, t) = 2{y(u1,t) — y(uz,t), k(u1, t)N(ui,t) — k(ug, t) N (ua, t)).
Moreover, using the Frenet-Serret formulae yields

dflqb(uhug,t) =24 2{v(u1,t) — y(ua,t), K(u1, t) N (uy, t)),
02,0(u1, ug, t) = 2 — 2(y(u1, t) — y(uz, t), (ug, t) N (ug, )).

Subtracting ;¢ — As¢ indeed leads to a constant —4. O
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Figure 1.7: Visualization of the Schur Comparison Theorem.

~

1.3.2 GENERALISED SCHUR COMPARISON

The following Lemma ensures the absence of small kinks in a curve with bounded curva-
ture. The original result for planar curves is due to Schur [Sch21] and a generalized version
was introduced by Schmidt [Sch2s]. The following formulation of Schur Theorem is from
[LSpr1]. The visual interpretation of the result is depicted in Figure 1.7.

Lemma 1.3.6 (Generalized Schur Comparison Theorem). LetI'y and 'y be both arc-length
parametrized open space curves with the same length L > 0. Assume that 'y is planar and

Fl V) OC(Fl) C (}C(Fl U 8C(F1))
Let k1 and ko denote curvatures of 'y and Ty, respectively. And assume that k1(s) = Ka(s)
forall s € [0, L]. Then we have |y1(0) —v1(L)| < |v2(0) — ~v2(L)].
The generalized Schur Comparison Theorem, stated in Lemma 1.3.6, allows us to adapt
Corollary 3.2.4 from [GH86] for our higher codimension setting.

Lemma 1.3.7 (Generalization of Corollary 3.2.4 from [GH86]). LetI's be uniformly bounded
curvature k by a constant C' > 0. Then the functional ¢ from (1.35) satisfies

Uo 2
ourvint) > g [sin (& [ I onan )|

U1

foralluy,uz € ST and all t € [0, ).

Proof. SettingI'; to acircular arc with radius C ™! in Lemma 1.3.6 yields the inequality. [

1.3.3 SPHERICAL AVOIDANCE PRINCIPLE

With Lemma 1.3.3, 1.3.5, 1.3.6 and 1.3.7, we are ready to proof the avoidance principle for
spherical curves. It states that embedded spherical curves with bounded curvature cannot
intersect themselves during the curve shortening flow in R3. The idea of the proof and its
steps are based on the planar version of this result from [GH86].

Proposition 1.3.8 (Proposition 4.6 from [MB2o]). Let {T't }1c[0,1) be a family of space curves
evolving according to the curve shortening flow from an initial curve I'o, which is an embedded,
spherical curve. Assume that the curvature k can be uniformly bounded by a positive constant

C forallu e S* and t € [0,t). Then Ty will remain embedded for all t € (0, 1).
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Figure 1.8: Decomposition of T2 x [0, ) into € and D. Linear arrows and double arrows
indicate the fundamental polygon of each slice in time.

Proof. Let us first split the domain 7% x [0, ) of the ¢ from (1.35) into two disjoint parts

&= {(ulau27t) € T2 X [072) : J‘ Hé’u’y(u, t)” du < g} (138)

end the remainder D = (T x [0,£)) \ £. Note that from this construction,
P(u1,uz,t) =0

implies uq = ug forall (u, us,t) € £ due to Lemma 1.3.7. Thus, to prove I'; will remain
embedded, it suffices to show that ¢(u1,u2,t) > 0 everywhere on D. Furthermore, all
points (u1, u2,t) on the boundary 0& satisfy

Ug n
u ) du = =
. 1o tan= 2

from the construction. Together with Lemma 1.3.7, we can lower bound ¢ on 0& by a con-
stant %. Because Iy is embedded and closed, there exists mq € (O, %) such that

i&ng o(ug,us,t) = min {;D%gg o(u1, ug, t), 42} > my.
We extend the definition of ¢ from (1.35) for & > 0 and (uy, ua,t) from T2 x [0, ) to
o (u1, ug, t) := ¢(uy, us, t) + et. (1.39)
For contradiction, assume there exists mo € (0,m1) and (u$, u$, t°) € D such that
e (ug, ug, t%) = ma,

and without loss of generality let £° be the smallest possible. Since ¢, attains its local mini-
mum at (u$, u$, t°), we can use Lemma 1.3.3 to conclude that

|05, 0y P (u, ug, £°)] = 2KT (uf, £%), T(ug, %)) = 2T (ug, ) [T (us, )] = 2.
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\/ F(),ul

Figure 1.9: Two disjoint and mutually spherical curves I'g o, and I'g o, will remain embed-
ded and mutually spherical while shrinking without touching.

Since t° is the smallest possible, the derivative d,¢, (u$, u$, t°) is non-positive and

det 651 ¢8(u?7 ug’to) 051652(155(71?, ug’to)
05,05, Bc (ug, us, t°) 0§2¢5(u§’,ug,t")

With the Young inequality and inequality (1.40) we can bound the arc-length Laplacian as

> 0. (1.40)

Ao (uf, u3, %) = 02, ¢ (ug, u3, %) + 02, 6= (S, u3, %)

1
> 2(02 ¢ (uf, u3,t°) 02, ¢-(uf, u3, %))
> 2|05, 05, 0 (uf, us,t%)| = 4.

Together with Lemma 1.3.5 and the definition of ¢, in (1.39) we obtain the inequality

0= 0re(uf, us, t°) = drdp(ug, u3, t°) + ¢ = Agp(uf,ug, t°) —4+¢
= Aspe(uf, u3,t°) —d+e>¢,

which contradicts the initial assumption € > 0 and thus proves the statement. O

1.3.4 MUTUALLY SPHERICAL CURVES

Similarly to its planar counterpart, the spherical avoidance principle can be extended to mul-
tiple independent curves subjected to the same motion law. In our case, however, the curves
must initially lie on either a disjoint sphere or on the same one. To capture this behaviour, we
introduce the notion of mutually spherical curves.

Definition 1.3.9 (Definition 4.7 from [MB2o]). Let A be a finite set of indexes. The family
of space curves {T' o} ae A is mutually spherical if and only if there is x € R3 such thar for each
a € AthereisrT > 0 for which |y — x|| = v for all points y € Ty,

Corollary 1.3.10 (Corollary 4 from [MB2o]). Let A denote some finite set of indices and
{Tt,a }te[0,t),ae.4 be afamily of curves all evolving according to the curve shortening flow from
a _family of initial curves {T o} oea that are mutually spherical and disjoint. Furthermore,
assume that the curvatures of the evolving families of curves can be uniformly bounded. Then
the curves Ty o, will remain disjoint for all t € (0, 1).
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Remark 1.3.11. The avoidance principle also works when the curves are on different spheres
which bound balls that are all disjoint. Since they will remain on these shrinking spheres, they
can never intersect either.

The example of how the spherical avoidance principle affects several mutually spherical curves
under the curve shortening flow is depicted in Figure 1.9.

1.4 CONCLUSIONS

The long-term behavior of curve shortening flow in higher codimensional spaces diverges sig-
nificantly from the well-understood planar case. While classical results such as the Grayson-
Gage-Hamilton Theorem describe the behavior in R?, higher dimensions introduce com-
plexities, including formation of different singularities and lack of preservation of convexity.

This chapter covers two author’s publications on this topic. The first contribution [MKB19]
introduces a generalized comparison principle for bounding space curves with respect to mov-
ing hypersurfaces. The second article [MB2o] analyzes convexity preservation and proves the
Avoidance principle for spherical curves.

The study of higher codimension flows is an active field with recent developments and open
problems. The analysis of these problems often requires more complex apparatus from differ-
ent fields like topology as the normal vector can be non-unique or undefined. To tackle these
issues we investigated the theory of nondegenerate homotopies in article [MB22b] which is
covered in Chapter 3.
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Minimal Surface Generating Flow

This chapter covers results from author’s article [MB22a]. In particular, it introduces two
concepts that play a significant role in the context of this thesis and author’s work.

First is the notion of trajectory surface, which is generated by the evolving curve. It can be
used as a tool for studying the long term behaviour of any geometric flow of curves. In this
chapter, we define these surfaces and describe their geometric properties.

The second main contribution of the chapter is the minimal surface geometric flow, which
was first introduced and studied in [MB22a]. This flow generates surfaces of zero mean cur-
vature bounded by the initial curve and thus can be used for their analysis.

2.0 INTRODUCTION

Minimal surfaces are not just mathematically intriguing but also useful in various applied
fields. Originally conceptualized to model soap films stretched across wireframes, minimal
surfaces have been studied in the context of cell membranes [LL14], crystal structures in zeo-
lites [AHB85; And+88; Scr76], and even in general relativity as representations of black hole
apparent horizons [Hlo1].

The aesthetic qualities of minimal surfaces also influence architecture and art, as seen in Mu-
nich’s Olympiastadion. More recently, periodic minimal surfaces have been explored for new
composite material development [AAR 16], and soap film dynamics with moving boundaries
have been investigated [Gol+10; Gol+14]. In knot theory, surfaces constrained by a fixed
boundary are related to the concept of Seifert surfaces and the genus knot invariant [WCo6].

Minimal surfaces with a given boundary can be computed and analysed using multiple dif-
ferent existing approaches. The level set method focuses on solving the mean curvature flow,
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Ty

Figure 2.1: General trajectory surface geometry.

ultimately converging to a surface with zero mean curvature [Cho93; Dzigo]. Another ap-
proach numerically approximates the Weierstrass-Enneper representation formulas [Tergo].
Alternative methods include the stretched grid technique and the discrete differential geom-
etry approach, as elaborated in [BHSo6; PP93; SW19].

2.0.0 TRAJECTORY SURFACE

The main driving concept behind articles [MB22a] and [MB23] is the notion of the trajectory
surface for an evolving curve. It is the set of points swept out by the evolving curve and can
be seen as a surface parametrized by the curves parameter u € S I and the time coordinate
t € [0,t). We formalize this notion in the following definition.

Definition 2.0.1 (Definition 2.1 from [MB22a]). Let {T's }1eq0,4) be a family of space curve
in R3 that evolve according to a given geometric flow with velocities vy and vp and the initial
condition I'y. We define the trajectory surface Xy formally as

Ez = U I t-
te[0,t)
One can also view the trajectory surface ¥y as a parametric surface given by the map v(u, t),
where the time t is treated just as another parameter parameter in the same way as .
These surfaces may not be embedded even if all of the individual curves are. Note that 3; is

not related to moving surfaces described in Section 1.1.

Remark 2.0.2. Aftertheirintroduction in [MB2z2a], trajectory surfaces were further analyzed
in [ZZW2z], which includes a description of properties of u-curves, i.e. open curves given by the
parametrization (-, w) with a fixed parameteru € S* defined on the time domain [0, t).

2.0.1 SURFACE GEOMETRY

To analyze the generated trajectory surfaces, we describe their geometry in terms of the geom-
etry of the evolving curve and the velocity vector of the given motion law. We first compute
the fundamental forms and then provide formulas for the Gauss and mean curvatures.

Lemma 2.0.3. The first fundamental form 1 of the trajectory surface ¥ can be represented as
a diagonal matrix1 = diag(g?, v?), where v* 1= vi; + v% is the magnitude of velocity.
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Proof. The first fundamental form can be expressed in terms of the parametrisation of I'; as

[= |:5 ]::| _ |: 10wy (Ou, at7>:|
F G vy, 0wy o] |

Using the equations (5-8), we obtain the elements of the matrix representation of I:

E=9¢% F=0, G=0v%+v% (2.1)
The first fundamental form is thus indeed diagonal with entries g and v?. O
The second fundamental form, presented in the next lemma, is more involved but computed
in the same way as the first fundamental form.

Lemma 2.0.4. Elements of the second fundamental form W of the trajectory surface ¥y read

2
KU UNOsUB — VBOsU
l::_g B7 M:g NUsUB BSN-FTU,

v v

VN OUB — VROV v
N = NOTB T BN —(vN0sT + 270N + O2vp —vpT?),
v K

where L and N are the diagonal entries, M lies on the antidiagonal and v := (v¥ + v}) 2,

Proof. Asin Lemma 2.0.3 we can express the second fundamental form in terms of y:

=[5 V][ e,

where the unit normal vector 7 of the trajectory surface ¥; can be expressed as
n=0uy x Y| 0uy x 0y = (v% + v3) "2 (vy B — vgN).

Straightforward algebraic manipulation and equations (5-8) yield the statement. O

With the equations for both fundamental forms from the previous lemmas, we are ready to
write down the formulas for the Gauss curvature KX and mean curvature H.

Lemma 2.0.5. We can write K and H in terms of the functions vy, v, Kk and T as

vBOUN — UNOUR UNOsT + 270suN + 0%vp — vpT?
K =kvp 7 —UB TR
v v
2 A
_ (wnOsvp —vpdson)”™ , UNOsUB —UBOSUN
vl g v2 ’

2

KUB N VNOUB — VBOLUN N UNOsT + 270suN + 02vp — VBT

v v3 KU

Proof. The Gauss curvature K and the mean curvature H of ¥, are then computed as

detI LN — M? L N
- - H=Te(ID)™) ==+
det I EG—F2’ (Xn= E G
The formulas above are then obtained by straightforward algebraic manipulation. O
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2.0.2 MoTioN Law

Assume vp = 0 and the curve is moving only in the direction of the principal normal vector
N. The expression for the mean curvature H significantly simplifies to

H = (Jon|r) " (un 057 + 27050N). (2.2)

It is worth noting that in the case of vgp = 0, the Gaussian curvature K = —12 does not
depend on the normal velocity term vr. Moreover, K is always non-positive and the surface
Y, is developable (meaning K = 0) if and only if the curve I'; is evolving in a plane.

Furthermore, when vg = 0 we can rewrite the mean curvature as

Os Os
UNT [T UN] = |UNT 0s (log |7| + 21og |un]) -

N lon|k | T VN N|K

. . _1
This means that we can ensure that H is zero everywhere only when we set vy = F772
with F' = F'(t) being any function constant with respect to the parameter u. We choose the
F = 1 for simplicity and introduce the new motion law in the next definition.

Definition 2.0.6 (Definition 3.1 from [MBa2a]). Let g be a closed space curve with positive
curvature and torsion. We say that a_family of curves {T's }1e(0,¢) #s evolving according to the
minimal surface generating flow if its parametrization vy satisfies the initial value problem:

oy = TTEN inS* x (0,1), (2.3)
N P— inSt, (2.4)

where ~yg is parametrization of the initial curve Iy and T is the torsion of the curve.

2.1 TECHNICAL PRELIMINARIES

In this section, we first adapt the necessary evolution equations of geometric quantities from
their general form to the minimal surface generating flow and then prepare other useful lem-
mas by applying the Gauss-Bonnet formula to the generated trajectory surface.

2.1.0 Evorution EQuaTIiONS

For the convenience of the reader, we list the evolution equations for geometric quantities
derived from Proposition o.4.3 and adjusted to the specific geometric flow from Definition
2.0.6.

Lemma 2.1.1 (Evolution equations). The local geometric quantities g, k and T satisfy

0rg = —grT 2, (2:5)
Ok = 02(172) + 73 (k2 — 72), (2.6)
O = 2K73. (2.7)



Figure 2.2: Trajectory surface geometry for the minimal surface generating flow.

The evolution equations for the Frenet frame can be written in the following compact form

1

D=

T 0 Os(t72) T T
0 | N| = |—0s(r2) 0 0 N|. (2.8)
B —73 0 0 B

The first immediate application of Lemma 2.1.1 is an important result for the existence of
. . _1. . .

the solution. Because the normal velocity vy = 772 is ill-defined when 7 is zero, we need

to ensure its positivity throughout the flow. We achieve this in the following proposition.

Proposition 2.1.2 (Proposition 1 from [MB22a]). LetI'g be a space curve with non-vanishing
curvature and positive torsion. Then the torsion T (-, t) remains positive everywhere for all t €
[0, t). Moreover, the function T(u, t) is strictly increasing in time for any fixed u € S*.

Proof. From (2.7) from Lemma 2.1.1 we get surprisingly simple evolution formula
O = %T_%aﬂ' = %7'_% (27%5 + 83[%(7'_%857 + 27'(95(7'_%))]) =K. (2.9)
Since the curvature & is positive by the assumptions, we can use (2.9) to estimate

t1 2

T(u,tl)—[r(u,to)é+ L H(u,t)dt] > 7(u to)

0

forallu € S*andall to,#; € [0,¢) such thattg < t;. Thus 7 strictly increases. O

2.1.1 GAUSS-BONNET THEOREM

The Gauss-Bonnet theorem relates the global geometry of a surface to its topological prop-
erty, namely its Euler characteristic. General results that connect topology and geometry in
a non-trivial way, like the Milnor-Firy theorem or the Cilugireanu theorem, are often very
useful and the same is true for this formula. Let us first restate the Gauss-Bonnet theorem.

Theorem 2.1.3 (Gauss-Bonnet theorem, see e.g. [Car76]). Let M bea compact Riemannian
manifold of dimension z and Euler characteristic x(M). Then

J KdA + J kg ds = 2myx (M), (2.10)
M oM

where K is the Gauss curvature of M and k4 is the geodesic curvature of the boundary M.
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Let us also recall, e.g. from [Hato2], that the Euler characteristic of a surface M is given by
X(M) :bo(M) —bl(M) +b2(./\/l), (2.11)

where b; (M) denotes the i-th Betti number, i.e. the rank of the corresponding homology
group H;(M). We will use this formula to compute the Euler characteristic of the trajectory
surface in the following result which applies the Gauss-Bonnet theorem to our setting.

2.1.2 ToTAL CURVATURE

The total curvature is an extremely useful quantity as is can be used in various estimates due
to the theorems of Fenchel and Milor-Firy. In our case, this integral also appears in the Gauss-
Bonnet formula stated in the previous subsection. This fact is used in the following lemma.

Lemma 2.1.4 (Lemma 3.3 from [MB22a]). The total curvature for the curve evolving accord-
ing to the minimal surface generating flow in the time interval [0, t) satisfies

t
J ﬁds—f kds = —J J 72 dsdt. (2.12)
T, Ty 0 Jry

Proof. Applying the Gauss-Bonnet theorem (stated in Theorem 2.1.3) to 3; yields

KdA + J kg ds = 2mx (%), (2.13)

2 %y

where the boundary 0%, = I'g U I'; consist of two curves, the initial I'g curve and terminal
one I's. Next, we will expand all terms of Equation (2.13) starting with the first integral

t
KdA = ff KT_%gdu/\dt=—Jf 7'%dsdt7
= T xSt 0 T

where T denotes the time interval [0, £) and the area element d A was computed as
dA = (EG— F2)2du n dt = gr 2 du A dt,

where £, G and F are elements of the first fundamental form defined in (2.1). For the second
integral in (2.13), we use the fact that n = B on 0%, which consists of two parts

6222 FO UFL

and the geodesic curvature satisfies k4 = x onI'g and kg = —k on I'y. Thus we have

J IigdS:J /@ds—J kds.
0% Ty Iy

Finally, since the surface X, is homeomorphic to a cylinder its homology groups are
Hy(3) =Z, Hi(Z)=Z, HyX)=0.
This means that bg(X;) = b1(X;) = 1 and all higher Betti numbers are zero. Thus
X(E) = bo(X¢) — b1(3g) + b2(5y) = 0.

Substituting all three terms from above into the original equation (2.13) yields (2.12). [
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Remark 2.1.5. Equation (2.12) can also be confirmed by a straightforward differentiation

d

— I{dSIJ kOig + Orkgdu =
dt Ft S1

85(7’7%) —73ds = ff 72 ds,

Iy Iy

. . 1. .
where the middle integral of 0%(77 2 ) is zero because the curve 'y is closed.
The formula (2.12) will be used in several important estimates later, but it also has a straight-
forward implication for curves shrinking to a point.

Proposition 2.1.6. Let {I's }e7 be a family of space curves evolving according to the minimal
surface generating flow. Assume that the curve Iy shrinks to a point at the terminal timet. This
assumption means that the length L(L'y) asymprotically vanishes as t approaches t. Then the
total curvature of the initial curve Iy must be strictly larger than 4.

Proof. In this case, the final surface ¥ including the limiting point toward which the curve
shrinks is homeomorphic to a disk instead of a cylinder. The Euler characteristic is then equal
to 1, not 0 as before, and the Gauss-Bonnet theorem implies

t .
_J J T%det"'J nds—limj kds = 2.
0 JI'y Ty t—t Iy

After applying the Fenchel theorem and simple algebraic manipulation, we get an inequality

t
f /ﬁd5247r+ff 75 dsdt.
To 0 Jr,

Since the integral is strictly positive, the total curvature must be larger than 47. O

2.2 BAsic PROPERTIES

Let us explore several basic properties of the minimal surface generating flow introduced in
Definition 2.0.6. We first show a trivial analytical solution in Subsection 2.2.0, then presenta
preserved geometric quantity in Subsection 2.2.2 and bound the evolving curve in the convex
hull of the initial condition using the Maximum principle in Subsection 2.2.1.

2.2.0 ANALYTICAL SOLUTION

Analytical solutions to partial differential equations are often useful for gaining insight into
the behaviour of general solutions and can help as sanity checks for computational experi-
ments. In the case of the minimal surface generating flow, we only have one analytical solu-
tion, for the highly symmetric case of the helix curve that traces out the helicoid surface.

Example 2.2.1 (Example 2 from [MB22a)). 1z this example, we show that the belix curve gen-
erates helicoid as its trajectory surface. Thanks to the symmetries of the belix and zero binormal
velocity term, the solution has to be in the following form:

v(u,t) := [p(t) cosu, p(t) sinu, £u] T,

70(“’) = [pO COS U, Po sinu,fu]T,
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Figure 2.3: Diagram of the helix analytical solution from Example 2.2.1.

where both py and & are positive constants. As the torsion can be retrieved from p and § as
(1) = &(p(t)? + €)1

and the normal vector points toward the central line, this setup reduces to an equation
. _ 1
p(t) = —(€ " p(t)* + €)=.

This ordinary differential equation bas a unique solution in the following implicit form

t=t— 362 log [€71p(t) + C(B)] — 3€2 p(1)C(8).
where the terminal time t is determined by the initial condition po and C is given by

2

() =1+ (£ "p(t))

Thus the radius p of the belix monotonically strictly decreases and asymprotically approaches
zero as the belix approaches a straight line as the time t tends to the finite t.

One should note that this example is an open curve. No analytical solution of a closed curve
evolving by the minimal surface generating flow is currently known.

2.2.1 INTEGRAL OF MOTION

Integrals of motion are useful for analysis of the long term behaviour as well as for the verifi-
cation of numerical schemes. In the case of the minimal surface generating flow, we have the
following curious preserved interval.

Corollary 2.2.2 (Corollary 1 from [MB22a]). Let Iy evolve according to the minimal surface
generating flow. Then the integral of T3 along the curve 'y does not change during the flow.

Proof. Differentiation of the integral using the formulae (2.5-2.8) leads to

d d
& . 72ds = T - T%gdu= JSl at(T%)ngT%@tgdu. (2.14)
After algebraic manipulation, all terms in the integral (2.14) cancel out. 0
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(a) Restriction of I's inside of half-planes. (b) Restriction within the convex hull.

Figure 2.4: Stages of restriction of I'y from Lemma 2.2.4 to Proposition 2.2.5.

As all other flows with positive velocity term in the principal normal direction, the minimal
surface generating flow reduces the length of the curve in time.

Proposition 2.2.3 (Proposition 2 from [MB22a]). Thelength L(T',) of a curve T under the
minimal surface generating flow monotonically strictly decreases in time.

Proof. Straightforward differentiation and the application of formulae (2.5-2.8) yields

d

&L(I‘t) = - Orgdu = — Lt kT2 ds.

The integrand in the last term is always non-negative and, furthermore, it must be positive
on a part of the curve with a non-trivial one-dimensional measure. O

We later show the length for closed curves must decrease to zero if the flow exists forever.

2.2.2 MAXIMUM PRINCIPLE

In this subsection, we use a maximum principle-like argument to bound the parametric func-
tion y inside a convex hull of its initial range. We prove this fact for the minimal surface gen-
erating flow, but the following arguments are applicable to any geometric motion law with
no binormal velocity and non-negative principle normal velocity component.

Lemma 2.2.4 (Improved Lemma 3.2 from [MB22a]). Let B denote an orthonormal basis of
R3. For an evolvin g family of closed curves 'y and all basis vectors b € B, we define

my(t) := m%gn(b,'y(u,t» and my(t) = m%x<b,'y(u,t)>.
ueS?! weSt
If Ty is evolving according to the minimal surface generating flow, it must satisfy
my,(0) < (b, y(u,t)) < mp(0)

Sfor all basis vectors b € B and all timest in [0,t). Thus I'y must remain within a minimal
cuboid containing 'y which is axis-aligned with respect to the basis vectors from B.
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Proof. Since S! is compactand (-, t) is continuous, the function ¢y, ; := (b, ¥(-, t))attains
its minimum and maximum for fixed b € Band ¢ € [0,) at some points u,(t) € S* and
up(t) € S, respectively. The function ¢, + must then satisfy

au(bb,t(ﬂb(t)) =0= au(bb,t(ab(t))’
Zhpi(uy(t)) = 0= 2y (Tp(t)).

Furthermore, the same inequalities at points , (¢) and @, (¢) hold for the d;¢y, ; because

0,y = (b, ey = 773, AN = (573 9%) ™ 9Cb, 8) = Puglh 2w
Thus the function my () is increasing and 7725 (t) is decreasing, or in another words
my(0) < my,(t) < My (t) < mip(0)
for all times ¢ € [0,¢) and all basis vectors b € B8, which proves the statement. O
Proposition 2.2.5 (Proposition 3 from [MB22a]). Lez{I't }se(o,¢) be a family of closed curves

evolving according to the minimal surface generating flow (2.3-2.4) with the initial condition
To. Then T, remains inside the convex bull of the initial curve Ty for all timest in [0, t).

Proof. Applying Lemma 2.2.4 with respect to all orthonormal bases B from the Stiefel man-
ifold V3(R3) restricts the curve I'; within the intersection of all minimal cuboids containing
the initial curve I, i.e. with the convex hull of T'. O

2.3 LoNG TERM BEHAVIOUR

This section covers long term properties from [MB2.2a] of the the minimal surface generating
flow. In particular, we show that the length vanishesat¢ = o0 in Subsection 2.3.0 and provide
global area and terminal estimates in Subsections 2.3.1 and 2.3.3, respectively.

2.3.0 LENGTH LimMIT

The minimal surface generating flow shrinks the curve as we shown in Proposition 2.2.3.
However, this claim can be made even stronger. Using Lemma 2.1.4, we can show that the
length must shrink to zero provided the flow exists long enough.

Proposition 2.3.1 (Proposition 4 from [MB22a]). Let the initial curve I satisfy

infr = inf 7(u,0) > 0.
FO uesSt

Let 'y evolve according to the minimal surface generating flow and assume that the flow exists
forever, i.e. t = 0. Then Iy shrinks to a point as its length vanishes in the limit.
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Proof. Proposition 2.1.2 and the assumptions for the initial curve I'g allow us to estimate
tr t . [t
f J T2 dsdt = J inf 72 dsdt}infrﬁj dsdt.
0 Jr, o It I, To o Jr,

Reversing the order of the inequality and applying equation (2.12) and the Fenchel theorem
gives the following estimate of the length integrated through time

13 13 1
0 0 Jr, infr, 72 \Jr,

The upper bound is finite and does not depend on time. Furthermore, the length is always
non-negative. If t = 00, this forces the integrand L(I';) to approach zero ast — ¢. O

2.3.1 AREA ESTIMATE

The formula for the total curvature obtained from the Gauss-Bonnet theorem ca be used for
global area estimate of the trajectory surface swept by the evolving curve.

Proposition 2.3.2 (Proposition s from [MB22a]). Let A(3;) denote the area of ¥y, i.c.

A(S,) = L dA.

Assume that 'y evolves according to the minimal surface generating flow (2.3-2.4) from the
initial condition 'y which satisfies 7 > 0 for all points. Then the area can be bounded as

1
< —F—— - . .
A(Zy) nfr, 72 (LO kds 27r> (2.16)

Proof. Using the formula for the area element dA = T_%g du A dit we get

. L | 1
AZy) = Jf T_§gdUAdt:f J 7_2dsdt<.2(J- ,%ds—271'>7
- 0 Jry lan‘OT T

T xSt

where the inequality follows from Proposition 2.1.2 and inequality (2.15). O

The estimate (2.16) can be further improved for knotted curves. Provided that the curve I';
represents an embedding of a non-trivial knot for all ¢, one can replace 27 in the right-hand-
side of the inequality (2.16) by 47 using the theorem of Milnor-Féry instead of Fenchel.

2.3.2 AVERAGED CURVATURE

To further investigate the existence of the solution and the formation of singularities during

the flow, we shall understand the long term behavior of curvature and torsion. However, the
. . . . . 2/ 1.

analysis of these evolution equations is complicated by the second order term 05 (772 ) in

O = BT 3) TR (R = T,
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We avoid this problem by the following trick. Instead of analysing the curvature itself, we

. . . 1
integrate the equations (2.5-2.8) along the curve. This removes the term 0%(772) as the

curves are closed and allows us to study the evolution of the averaged curvature (k) given by

k(1)) = J[F K(s,t)ds := L k(s,t)ds, (2.17)

L(Ty)

where L(I';) is the length of T';. Since the curvature & is non-negative, the averaged curvature
(k) cannot vanish when I'; is a closed curve. Thus tracking whether and when the averaged
curvature approaches zero can give us a bound for maximum time of existence for the flow.

2.3.3 TERMINAL TIME

Using the averaged curvature (k) defined in (2.17), we can bound the terminal time for a
certain subclass of initial curves I'g with non-vanishing curvature and torsion.

Proposition 2.3.3 (Proposition 6 from [MB22a]). Let Iy be a closed curve such that

Ty 1= ilglfT >0 and  {(k(-,0)) <.
0

Then the minimal surface generating flow (2.3-2.4) cannot exist beyond the terminal time

2¢k(+,0)) ]
7—0_<’€('70)> .

Proof. The evolution of the averaged curvature can be computed using (2.5-2.8) and reads

d
Gt =—f

Let us denote the right-hand side of (2.19) by {({k(+,t)) , t). Using the torsion assumption,
the equation (2.17) and Proposition 2.1.2 we can bound this expression as

Ty ° log [1 +

N

t< (2.18)

1
2

72 ds + B 1)) kT3 ds. (2.19)
Iy

t

E(G(1)0) < —inf ¥ 4+ () supF <t e, — 7] (220)
t T,

Note that the right-hand-side of (2.20) is only a function of the averaged curvature. We can
thus denote it by ({x(-, ))) and use it to define an associated initial value problem

x(t) = ¢(x(t)), 2(0) = k(- 0)).

This ordinary differential equation can be solved analytically and the solution is given by

. (k(+,0)) cosh(y/Tot) — 7o sinh(,/7ot)
{k(-,0)ysinh(y/Tot) — 70 cosh(\/Tot)

The positive function (t) monotonically decreases until it reaches zero at the terminal time

x(t) =




The difference between {x(+, ) and (¢) which we denote by y(t) satisfies the inequality

(Rt ()
\/ﬁ

Finally, from the Gronwall lemma and the zero initial condition y(0) = 0, we obtain

““”>=Mﬂ+ﬂﬂ<ymnm{L<MH2%idﬂ

Since x(t) is a supersolution of the averaged curvature (k(-, t)), we obtain t < ¢. O

y(t) = €(t) — C(x(t) < C((R( 1)) — C(x(t)) y(t).

W]+ﬂﬂ=x@.

Remark 2.3.4. The maximum time of existence estimate from Proposition 2.3.3 says that the
flow cannot exist forever for initial curves that satisfy the assumptions. The Proposition 2.3.1
thus cannot be applied to this subclass of initial curves.

The main advantage of the minimal surface generating flow is its simplicity, however, it also
has many drawbacks. The issues that are related to frame topology are further analyzed in
Chapter 3 and the improved version of this flow is proposed in Chapter 4.

2.4 CONCLUSION

The chapter covers the article [MB2.2a] which introduces the minimal surface generating flow
and develops methods required for analysis of surfaces traced out by general geometric flows.
The study of trajectory surfaces is a tool for studying the long-term behavior of geometric
flows and in this chapter, we showed how these surfaces can also be used for the study of
specific types of surfaces.

The main results of the analysis for this specific flow include the monotonicity of torsion, the
evolution of total curvature and other global quantities including an integral of motion, the
use of Maximum principle for constraining the flow in space, and various global estimates
including the upper bound for the generated area and terminal time.

However, the analysis uncovered issues related to the frame topology, which are further ad-
dressed in the article [MB22b] covered in Chapter 3. Moreover, a modified approach based
on curve frame evolution has been developed in preprint [MB23] contained in Chapter 4.
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Nondegenerate Homotopy

This chapter covers results obtained in [MB22b]. In contrast to the other chapters of this
thesis, which focus on the analysis of specific geometric motion laws, this chapter aims to
address general topological problems encountered in a broad range of curve flows in space.

Although all closed curves are homeomorphic to S 1 the topology of their framing and of
their complement in three-dimensional spaces is considerably more complex. This serves as
the foundation for knot theory—a vibrant field of study with wide-ranging applications be-
yond pure mathematics [Soso4]. While this chapter does not directly employ specific results
from knot theory, it is informed by one of the field’s key insights: the remarkable utility and
efficacy of various topological invariants [Adao4].

To address topological complexities associated with geometric flows, we introduce a novel
topological invariant. While plane curves benefit from well-established invariants such as the
turning number, no precise analog exists for space curves. To bridge this gap, we put forth
the concept of the tangent turning signature.

Additionally, recent work has suggested generalized winding numbers for incomplete data
sets [JKS13]. For a comprehensive contemporary treatment of winding numbers for curves
embedded on surfaces, see [FGC23].

3.0 PROBLEM FORMULATION

Utilizing local geometric quantities from the Frenet frame to describe geometric flows is both
intuitive and useful. However, because the construction of the Frenet frame requires positive
curvature, this approach effectively limits the motion to locally convex space curves. This
chapter aims to expand on and apply concepts from regular and nondegenerate homotopy
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theory to better understand these restrictions. For more comprehensive details, see [MB22b].

First, we establish the link between a series of geometric evolution equations and findings
from nondegenerate homotopy theory. Then, we introduce a new invariant metric called the
tangent turning sign to help distinguish between different nondegenerate homotopy classes
of space curves. By doing this, we can anticipate the variety of possible trajectories for evolving
curves based on their starting geometric layout.

3.0.0 VANISHING CURVATURE

Let us restate the definition for the geometric flow of space curves with general velocity terms.

Definition 3.0.1 (Restated Definition 0.3.2). Wedefine the general geometric flow of the fam-
ily of space curves {1t }c[0,4) as the following initial-value problem for the parametrization y:

oy = vrT +vyN +vpB in S* % (0,1), (3.1)
Yli=0 =0 in S, (3.2)

where g is the parametrization for the initial curve L'y and t is the terminal time.

The problem with Definition o.3.2 restated above is the explicit dependence on the Frenet
frame vectors IN and B, which are undefined when the curvature vanishes. There are cases
this issue can be avoided by the trick described in the following remark.

Remark 3.0.2. Let us consider a geometric flow described by vr, vy, and vp which do not
explicitly involve the torsion T. Let us furtber assume that for any curve we have

lim (v +v%) = 0. (3-3)

u—ug
for all points ug € S where the curvature k vanishes. In this case, one can modify (3.1) to

vrT +uvyN +vpB, k>0,

Oy =
v vpT, k=0.

Notably, one can apply this modification to the curve shortening flow and the vortex filament
equation, described by Oy = KN and Oy = KB, respectively. However, there are many cases,
where this is not possible. We shall discuss such scenarios in the next subsection.

3.0.1 FRENET FRAME DEPENDENT FLOWS

This subsection introduces the notion of Frenet frame dependent geometric flow and defines
anotation for curve spaces with different regularity classes and their quotient spaces induced
by different types of homotopies, like regular and nondegenerate homotopy.

Definition 3.0.3 (Definition 2.2 from [MB22b]). Geometric flow with velocities vy, vy and
vp from Definition 0.3.2 is called Frenet frame dependent flow if it does not satisfy (3.3)
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To streamline the writing in upcoming sections, we introduce a concise notation for curves
with non-vanishing derivatives of various orders.

Definition 3.0.4. Let k be a positive integer and M be a Riemannian manifold. We denote
R¥ (M), the space of all closed CF-class curves with paramatrization v: S* — M satisfying

|0ty (w)] >0
for all parametersu € S L and all positive integers i up to the value of k.

Example 3.0.5. In this thesis, we only discuss the spaces R* (M) from Definition 3.0.4 for
small values of the parameter k and Euclidean M. Let us examine these spaces more closely:

1. RY(M) are all regular curves immersed in the ambient space M.

2. R*(M) are all locally convex curves in M, e.i. curves of non-vanishing curvature.
Note that for M = R2, all embedded curves from R2 (Rz) are convex.

3. R3 (RS) are curves with non-vanishin g torsion, either positive or negative euerywbere.

For the convenience of the reader, we present the following trivial, but useful, statement.

Observation 3.0.6. Let I be a closed, C*-class space curve. Then the curve I is locally convex
from the space R*(R?) if and only if its tangent indicatrix belongs to R*(S?).

Proof. Follows immediately from the first Frenet-Serret equation 0,1" = kN. O

The main focus of this chapter is the space R? (R?) of locally convex curves. Let us explore the
specific type of homotopy, called nondegenerate homotopy, that is crucial for these curves.

Definition 3.0.7. A regular homotopy hy between two locally convex curves from R?(R?) is
called nondegenerate homotopy if and only if each intermediate curvel's generated by the homo-
topy hy belongs to the same space R*(R3). The equivalence between two curves from R?(R?),
induced by the nondegenerate homotopy is denoted by ~, the associated gquotient map by q. and
the associated quotions space by R* (M) /~.

To avoid confusion, we denote the equivalence relation induced by regular homotopies as ~,
the associated quotient map by g~ and the associated quotions space by R! (M) /~.

3.1 TANGENT TURNING SIGNATURE

This section contains the definition and analysis of an invariant called tangent turning signa-
ture [MB22b]. Its values categorize locally convex curves into distinct equivalence classes.
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Figure 3.1: Construction of I'” from Definition 3.1.1. Adapted from [MB22b].

3.1.0 TOPOLOGICAL PRELIMINARIES

In this section, we describe and use the notion of nondegenerate homotopy in the context of
Frenet frame-dependent geometric flows. The motivation comes from the fact that during
these flows, the curve I'; € R?(R3?) at any time ¢ and its initial condition I'y belong to the
same equivalence class in R?(R?)/~.

Let us thus examine the topology of R?(R?)/~. In [Fel68], Feldman addressed the cardinal-
ity of this quotient space by studying the Frenet frame of a locally convex curve as a mapping

F:S' - 850(3),
and, using properties related to the fundamental group of SO(3), specifically that
m1(SO(3)) = Zs,

Feldman demonstrated that R?(R?)/~ is comprised of two equivalence classes.

Although Feldman’s findings clarify the cardinality of equivalence classes, the methodology
for classifying a specific curve within R?(R?) remains unaddressed. This chapter introduces
anew topological invariant aimed at facilitating such classifications and elucidating the struc-
ture of R?(IR3)/~. Further elaboration on this invariant follows.

3.1.1 WELL-DEFINEDNESS

This subsection introduces the notion of tangent turning signature and proves that the defi-
nition is proper. We later prove that this signature is invariant with respect to nondegenerate
homotopy and thus preserved during any Frenet frame dependent geometric flow.

Definition 3.1.1 (Tangent Turning Signature). LezI' € R?(R?) be a locally convex space
curve and choose a fixed p € S*\Ran T. By T'), we denote the projected curve given by

Yp i= P, 0T,
where T is the tangent vector function of the original curve I' and the second map

®, : S*\{p} — R?
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is the stereographic projection from p. We define the tangent turning parity Tr € Zg as
Tr = deg(T},) mod 2,

where deg(T),) is the degree of the Gauss map for the curve Ty, also referred to as the turning
number of T,y or as the winding number of the tangent vector function T,,: S* — S*.

Remark 3.1.2. Note that in Definition 3.2 from the original article [MB22b], we used an
alternative but equivalent notion of tangent turning sign with values in {£1}.

The construction of the tangent turning signature in Definition 3.1.1 is based on an arbitrary
choice of the point p. This ambiguity is represented in Figure 3.1 and in this diagram:

RAR3) — 2 RI(S2) 7y RURZ) —2y CO(SY)

\\\\\ [ . dependso deg
~~o Np....
e el +
a~ T Y/
T T ‘
\\\\\\\ par
1 L
R2(R3)/~ —-mmmmmmmemee LS > 7./27.

In this diagram, dotted arrows represent maps that are not uniquely determined. Specifically,
they depend on the choice of the point p. In the following pages, we aim to show that this
ambiguity is resolved by the parity operation and that both the dashed arrows are legitimate.

The first dashed line tagged with f represents the definition of the tangent turning signature
and its well-definedness will be resolved in the next proposition. The second dashed arrow
labeled by 1 is resolved later, when we show that the value of the tangent turning signature is
preserved under nondegenerate homotopy and can thus be defined on the quotient space.

Proposition 3.1.3 (Proposition 3.3 from [MB22b]). The tangent turning signature Tr of a
locally convex curve I' € R%(R3) does not depend on the choice of p; i.c. Tr is well-defined.

Proof. To show that the value of 1 does not depend on the choice of p, let us consider two
different points p1, p2 € S?\Ran T'. In the trivial case, both points p; and ps lie in the same
path-connected component X < S?\Ran T'. By definition there must exist a regular path
7 :[0,1] — K such that 7(0) = p; and w(1) = pa, which defines regular homotopy

ht = q)ﬂ(t) oT

between the projected curves I',,, and I'p,,. Thus, by the Whitney-Graustein Theorem from
[Whiz7], we even have deg(T},, ) = deg(T},) and the parity equality is trivially achieved.

In the second case, points p; and py lie in different connected components C; and Cz of
S?\Ran T, respectively. Without loss of generality, assume they share a common border, i.e.

CinCy=a # 00, noCs.
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a) Differences in topology caused by the change of the singular point of stereographic projection.
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(b) Attaching two identically oriented loops to I, allows us to construct regular homotopy to Iy, .

Figure 3.2: Ideas from the proof of Proposition 3.1.3. Adapted from [MB22b].

In this configuration there must be a neighbourhood N = S? such that py, p2 € N and
N\Ran T < Cy U Cs. (3.4)

The projections ®,,, and ®,,, now indeed lead to different turning numbers. This difference
is caused by the common border of 0C1 n 0C5, which is projected in two different ways.
However, adding two loops of the same orientation to I',,, makes it possible to construct the
regular homotopy between the two projectionsI',,, and I, as suggested in Figure 3.2b. The
additional loops affect the total signed curvature by +4 and thus

‘deg(Tpl) - deg(TPQ )| =2.
The parity of the turning number thus remains constant, which means that the tangent turn-

ing signature 7r from Definition 3.1.1 is defined properly. O

3.2  RAMIFICATIONS

Having introduced this topological framework for describing locally convex curves, the focus
now shifts back to issues related to geometric flows. In the following, we aim to use the notion
of tangent turning signature to investigate their long-term properties.

3.2.0 INVARIANCE

As suggested before, we aim to prove that 7r does not change during any Frenet frame de-
pendent flow. The following lemma serves as a basis for the proof of this statement.

Lemma 3.2.1 (Lemma 3.5 from [MB22b]). Let hy be a nondegenerate homotopy and denote
{T+ }1eq0,1] the associated family of curves from R*(R®). Then for each t € [0,1] there is a
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neighbourhood H of t and p € S? such that the tangent vector map T'(-, t) satisfies
p & T[S" x (H n[0,1])], (3-5)

where the square brackets denote the image, e.i. the set {T'(u,t): we S',t € H n [0,1]}.

Proof. For afixed t from [0, 1], the tangent indicatrix T'(+, t) is differentiable and
T[S x {t}] # S2,

because there are no differentiable, space-filling functions [Mor87]. Since the domain S* x
{t} is closed, and so is the image of S x {t}, there must be p € 5% and € > 0 such that

T[S" x {t}] n B, = &,
where B is the ball {x € 5% ||z — p| < €}. Since T'is continuous and we have
min [T(.1) ~pl > <,
there exists neighbourhood H of ¢ on which we can lower bound the tangent vector map as

inf T —p|> <.
St x(Hn[0,1]) 2

Thus we constructed point p € S and neighbourhood H such that (3.5) is satisfied. O

Lemma 3.2.1 allows us to prove the invariance of 7r under nondegenerate homotopy. Show-
ing that 7 is a meaningful notion even on the space of equivalence classes M/ ~. This will
complete the commutative diagram by proving that the bottom arrow is well-defined indeed.

RAR?) — % RI(S2) 775 RYR2) —2 CO(SY)

deg

4
q~ Z
\

par

{
R2(R3)/~ T 7,27

Theorem 3.2.2. The tangent turning signature Tr of a locally convex space curve I’ € R*(R?)
is invariant with respect to nondegenerate homotopy and is thus well-defined on R*(R3) /~.

Proof. Let hy be a nondegenerate homotopy and denote the set of curves generated by h; as
{Ti}efo] © R*(R?).
Applying Lemma 3.2.1 for every ¢ yields the following uncountable set of points on S?:

P={p:tel0,1]} c S?
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and the corresponding open cover of [0, 1] made of neighbourhoods H;* = H; n [0, 1]:
§ = (HF: e [0.1]) « 2([0.1)).

where & (M) is the powerset of M. Since the closed interval [0, 1] is compact, there exists a
finite subcover of S’ < S of [0, 1] of cardinality N € N. Let us denote its elements by the
strictly increasing sequence of (¢;)1¥.; < [0, 1] with the corresponding set

S ={H}}Y, 8.
Furthermore, denote by P’ = {p; })¥; the associated subset of PP such that each ¢; satisfies
pi € SA\T[S' x H.

where T'(+, t) is the tangent vector map of the curve I';. Let us now construct a strictly in-
!
creasing sequence (k; ), of integers between 1 and N such that the corresponding set

8" ={Hy }, =&

!
is a minimal subcover with respect to inclusion. As the sequence (tx, ), is increasing, the
intersection in (3.6) is nonempty. The final configuration is depicted in Figure 3.3. Let

si€ Hif nHf (3.6)

and construct the following regular homotopy between the curvesand I';i and FZZI :

]Alt = ¢pki © T(a S + t(si+1 - Sz)) (3'7)
Each time interval [s;, $;11] is thus associated with following commutative diagram:

T(-si+t(siy1—s:))

Sl

Note that the homotopy (3.7) is regular due to Observation 3.0.6. Thus, we prove that

Tt = Tr

Sit+1

for all nonnegative integers ¢ < N’ and as this chain is finite, we have Tr, = 7r,. O

3.2.1  GEOMETRIC FLOWS

Theorem 3.2.2 immediately leads to the following important statement we aimed towards.

Corollary 3.2.3 (Corollary 3.6 from [MB22b]). Thetangent turning signature Tr of a locally
convex space curve L' is preserved under any Frenet frame dependent goemetric flow.
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Figure 3.3: Objects from the proof of Theorem 3.2.2. Adapted from [MB2.2b].

Theorem 3.2.2 can also be applied in reverse. Specifically, if the tangent turning signature
changes during smooth evolution, a point must exist where the curvature vanishes during
the motion. The following example illustrates this scenario.

Example 3.2.4 (Example 4.2 from [MB2.2b]). Consider the example adapted from [Gol+10]
with the transformation of a doubly covered circle to a simple circle, parameterized as

—tcosu + (1 —t) cos(2u)
Y(u,t) := | tsinu+ (1 —1t)sin(2u) |,
—2t(1 —t)sinw

wherew € St and t € [0,1]. Given that the tangent turning signature of L' is [0] and it
changes during the homotopy to [1], there must be (u,t) € S* x [0, 1] such that r(u,t) = 0.

The definition of Frenet frame dependent geometric flow can be further restricted to higher-
order regularity conditions. For example, the Minimal surface generating flow, introduced
in Chapter 2, demands that both curvature and torsion be non-zero at every point along the
curve. In the notation introduced in this chapter, all evolving curves must live in the space
R3(R3). For more examples of flows demanding non-zero torsion see e.g. [RKoz2].

The space of third-order nondegenerate homotopy classes has been examined in [Lit71]. In
this situation, four distinct equivalence classes emerge because the orientation of the curve
becomes significant. These four classes are uniquely defined by the combination of the tan-
gent turning parity 71 and the sign of the torsion 7. It’s worth noting that since the torsion
T is continuous and never zero, its sign remains consistent at every point along the curve.

3.3 CONCLUSION

This chapter introduces the tangent turning signature from [MB22b] as a topological in-
variant for understanding locally convex space curves in three-dimensional space. This new
quantity complements existing invariants like the turning number in plane curves.

We further establish a link between nondegenerate homotopy theory and Frenet frame de-
pendent flows. Specifically, the tangent turning signature differentiates nondegenerate ho-
motopy classes of locally convex space curves and thus remains constant during such flows.

Future research can extend the applicability of the tangent turning signature to broader cat-
egories of geometric flows, possibly accommodating manifolds in higher-dimensional spaces
or those embedded in different ambient spaces.
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Framed Curvature Flow

This chapter covers results from the most recent work [MB23], which introduces Framed
curvature flow. Curvature-driven geometric flows have been extensively studied for their
many favorable properties and various applications across multiple pure and applied fields.
We aim to take advantage of these benefits by keeping the magnitude of the local velocity
equal to curvature, but at the same time expand and generalise this family of flows by letting
the velocity direction be dictated by an associated time-dependent moving frame. We refer to
this new class of geometric flows as the framed curvature flow.

Even though our formulation is based on the Frenet frame, the velocity vector is well defined
even in the presence of vanishing curvature, where the normal and binormal vectors are un-
defined. In the language of Definition 2.2 from [MB22b], the framed curvature flow is nota
Frenet frame dependent geometric flow. In this way, it is a modification of the minimal sur-
face generating flow from [MB22a], where both torsion and curvature must remain positive.
Another advantage over [MB22a] is the rich configuration space enabled by the additional
degrees of freedom from the moving velocity direction field. To demonstrate the expressivity
of this approach we derive variations of the flow that trace out various surfaces of interest in
the latter part of this chapter.

In this work, we formulate the coupled dynamics of the moving frame and the curvature-
driven motion, establish local existence and uniqueness for a simplified case of this motion
law, provide useful global estimates for geometric and topological quantities, classify possible
singularities formed during the flow and analyse generated trajectory surfaces.

The Chapter is organised as follows. Section 4.0 introduces the framed curvature flow and
prepares the notation and lemmas required for further analysis of the flow and its trajectory
surfaces. The analysis itself is divided into Sections 4.1 and 4.2. While the former deals with
local behaviour including the local existence and formation of singularities, the latter (Sec-
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tion 4.2) focuses on long-term behaviour by means of length and area estimates and explores
the effects of the moving frame topology. Section 4.3 then showcases interesting examples of
flows from the configuration space of the framed curvature flow framework. Specifically, we
explore flows leading to trajectory surfaces of constant mean and Gaussian curvature.

4.0 INTRODUCTION

Consider a family of closed curves {I't } +¢[0,¢) evolving in the time interval [0, ), wheret > 0
is the terminal time. For a given time ¢ € [0,2), the curve T'y is represented by a parametriza-
tion y(-,t): S — R3, where S' = R/27Z is the unit circle. We use the standard Frenet
frame notation, where T', N, and B denote the tangent, normal, and binormal vectors, re-
spectively. The curvature and torsion, given by the Frenet-Serret formulae, are denoted by
+ and T, respectively. Furthermore, g := [0, is the local rate of parametrization and
ds = gdu is the arclength element.

4.0.0 THETA-FRAME

There are many ways to frame a curve [Bis7s]. The Frenet frame is in some sense canonical
and easy to work with, but is ill-defined at points of vanishing curvature. We define a time-
dependent moving frame that is derived from the Frenet frame using an angle functional
6. The normal vector associated with this moving frame will determine the direction of the
velocity vector during the framed curvature flow.

Definition 4.0.1 (0-frame). For an evolving curve {T's },e(0 1) and a functional
6 eCh?(S* x[0,1); 1),

we define a O-frame of T'y, with 0-normal vg and 0-binormal (g, using a one-parameter group

of rotation {Ay}, as

ve| N | cos@® sinf
[59] =% [B]’ where By = [_ sind cos@] € SO(2).

We denote the moving framed curves as {(Ty, 04) }1e[0,1), where 0y := 0(-, t).

Note that B9 = T" x vg and Frenet-Serret type formulae for the f-frame read

T 0 K cos 6 —ksin 6 T 0 v —o T
Os | vg | =| —Kcosf 0 T+ 040 vy |=:| =1 0 Y3 )
Be ksing  —1 — 050 0 Be Yy =3 0 Bo

In the context of the associated trajectory surface defined in section 4.0.2, 11 and 92 can be
interpreted as the geodesic and normal curvatures of I'y immersed in 3¢, respectively. Here-
after, we refer to 13 as the generalised torsion.
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I

(b) Vortex filament equation.

(a) Curve shortening flow.

Figure 4.1: Classical examples of geometric motion laws for space curves.

4.0.1  FrRaMED FLOowW

Definition 4.0.2 (Framed curvature flow). The family of evolving framed curves denoted by
{(T't,0¢) }e[0,1) is a solution to the framed curvature flow if the parametrization vy and the
angle functional 0 satisfy the following initial-value problem

oy = kv 240 = vy m S x[0,0),  (412)
Ylt=0 = 0 Olt=0 = 6o in S, (4.1b)
where g and Oy are the initial conditions and the 0-velocity
vg € C1(S x [0,1);R)
will be specified later in sections 4.1.2, 4.3.0 and 4.3.1.

Example 4.0.3. The framed curvature flow subsumes the following classical geometric flows,
depicted in Figure 4.1, as its special cases:

(a) Curve shortening flow studied e.g. in [AG92; Altg1]:
When 0|t—o = 0and vglo—o = 0, (4.1) reduces to 0y y = KN.

(b) Vortex filament equation studied e.g. in [Ricg1]:
When 0|i—o = 5 and v9|9:% = 0, (4.1) reduces to Oy = KB.

Remark 4.0.4. The framed curvature flow (4.1) can also be viewed as a local harmonic combi-
nation of the curve shortening flow and the vortex filament equation from Examples 4.0.3(a)
and 4.0.3(b), respectively. One can also write (4.20) as

Oy = cos B 0%y +sinf 0,7y x 02.

This formulation makes clear how the framed curvature flow (4.1) is well-defined even when
the curvature vanishes and the Frenet frame is undefined.

Remark 4.0.5. The set of equations (4.1) represents a case of geometric motion with an addi-
tional quantity, namely 0, whose velocity depends on the geometry, and vice versa. This kind
of coupling bas been studied in e.g. [Pad+19], where the the additional quantity represents the
local radius of a bubble vortex tube.
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Figure 4.2: Trajectory surface generated by framed curvature flow.

4.0.2 TRAJECTORY SURFACES

In the same way that a point mass moving in a homogeneous gravitational field generates a
parabola, trajectory surfaces are generated by geometric flows of space curves. As the title
suggests, these surfaces are one of the primary concerns of this chapter.

We argue that there are two main benefits to examining trajectory surfaces. First, the shape of
the trajectory surface encodes the long-term properties of the associated motion law, and thus
the knowledge of the generated surfaces may help us understand the overall behaviour of the
original geometric flow. Conversely, this framework provides an alternative way to generate
and study surfaces with prescribed characteristics, potentially enabling new ways to categorize
and understand these surfaces and possibly help tackle various open problems. The formal
meaning of trajectory surface is clarified below.

Definition 4.0.6 (Trajectory surface, [MB22a]). For a given 0-velocity vg, terminal time t
and initial curve L'y, we formally define the trajectory surface ¥ as

Zt = U Ft,

- teo)

i.e. ¥y is a surface parametrized by y(u, t) fort € [0,t) and u € S*.

Trajectory surfaces have been studied in [HM16] for the special case of inextensible flows,
i.e. geometric flows satisfying d,g = 0. An important example of such motion law is the
vortex filament equation, mentioned in Example 4.0.3. Surfaces generated by this motion
law, referred to as Hasimoto surfaces, have been previously considered in [AHY12].

Closely related to the trajectory surface is the concept of worldsheet from physics. In the
context of string theory, particles sweep out worldlines and strings sweep out worldsheets in
Minkowski space. The equations of motion are induced from the Nambu-Goto action or
the Polyakov action [Namgs; Goty1]. In our case, time is not treated as another dimension
as in general relativity, but rather as another parameter.

In this Chapter, we are specifically interested in trajectory surfaces of constant curvature (see
Section 4.3). In light of this, the following lemma states the formulas for the mean and the
Gaussian curvature of surfaces generated by (4.1).

Lemma 4.0.7. Mean curvature H and the Gaussian curvature K of the trajectory surface 3y
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obtained from the curve I'y evolving according to (4.1) can be expressed in the form

H = —tpy + xand K = —¢3 — o,

respectively. The auxiliary variable x used in the formulae above reads

2k — KO3

vg KOstz + 205K13
K

K K3

0
U1+

Pa.
Proof. The first and the second fundamental form I and I of 3J; are given by
=€ F]_[9w guu] _[9* O i-|Z #
TNF G| | Gue Gee| |0 K| T\ N
where (g;;) is the metric tensor of 3¢, and I contains & = —g%tbo, # = g3k and

03k — kY3

N = Kkvg + Y

KOsz + 205k
3 s s +

Finally, the mean curvature H and the Gaussian curvature K are

detl LN — . #? <z N
= = H=tr(I(I ') == +=-.
detl ~ 69— 72 rI) =%+
For more details, we refer the reader to Section 2 in [MB22a]. O

Remark 4.0.8. The principle curvatures of the trajectory surface ¥y generated during (4.1) are

K12 =—Y2+ X =* \[Ca
where ¢ := 3 — ox + X% + 3 and X is the auxiliary variable from Lemma 4.0.7.

Further analysis of trajectory surfaces has been recently carried out in [ZZW22], where the
authors describe the properties of u-curves, i.e. curves given by v(u, -) with fixed u € S*.

4.1 LocaL ANALYSIS

This section focuses on local properties, both in time and parameter space, of the solution
to the framed curvature flow Equation (4.1). In particular, we state the evolution equations
of the local geometric quantities in Section 4.1.0, study the effects of non-trivial tangential
redistribution in Section 4.1.1 and with the help of these preliminary results we establish the
local existence and uniqueness of the solution in Section 4.1.2. The Section 4.1.3 provides
an overview of possible singularities formed during curvature blow-up events.

4.1.0 EvorutioN EQuaTIONS

Evolution equations for local geometric quantities, like the rate of parametrisation or curva-
ture, during general geometric flows of space curves have been extensively studied in many
pieces of literature before. See e.g. [Olvo8] for a general algebraic approach or [BKS22] for
the treatment of geometric motion law similar to (4.1). We nevertheless state these equations
and adopt them for the specific case of framed curvature flow for reader’s convenience.
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Lemma 4.1.x. The arc-length commutator during the framed curvature flow (4.1) with the
angle functional 6 is given by

(04, 0s] := 0105 — 050y = K? cos B Os. (4.2)
Equivalently, 0rg = —k? cos g = —ki1g.
Proof. The statement is a special case of Proposition 1 from [BKS22]. O

Lemma 4.1.2. The Frenet frame during the framed curvature flow (4.1) satisfies

T 0 & —&||T &1 := 0591 — T2,
d|Nf=|-& 0 & N, & :=—0sbs— T,
B & &0 B &3 = K (Y1057 + %o — T2),

while the evolution of 0-normal vy and 0-binormal Bg can be expressed as

T 0 G —G||T (1 = Ok,
O lve| =|-¢C O 3 vg |, G2 := —3kK,
Bo G2 —¢G 0 Bo (3 :=vg + &3.

Finally, the curvature K and torsion T evolve as

ok = K21 + K1 (0241 — 0Ty — 2705400 + Y1) (43)
O = K1 (T + ¥3) + 05 [£72 (0202 + 205k0P10)3 — Koty + Kap10st2) | . (4.4)

Proof. The result can be obtained by substitution to Example 5.7 from [Olvo8]. O

The evolution equations for the f-frame local quantities 1, 92 and 13 are more involved:

01 = Ok cos O — 1hauyg,
Oytho = Oyk Sin O + 1y vy,
(9t¢3 = 8,57' + 651)9 + lease.

Here, 0 and 047 shall be substituted from (4.3) and (4.4).

4.1.1  TANGENTIAL REDISTRIBUTION

To simplify previous calculations, we ignored the tangential velocity in (4.1) by setting vy :=
(0¢y,T) = 0. Apart from advection of the f-frame along the curve, this choice does not af-
fect the geometry of the moving curve. Non-trivial tangential velocity can, however, be useful
for improving numerical stability and for existence analysis. We wish to do the latter in the
following section. Hence we introduce and analyse appropriate tangential term here. Specif-
ically, we use the tangential velocity term developed and used in [HLS94; Kimg7; MSo1] and
modify it for our motion law in the following lemma.
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Lemma 4.1.3. Assume that for all t € [0,t) and all s € R/L(I'y)Z the tangential velocity
vy satisfies the following integro-differential equation

S

vr(s,t) = vpo(t) + J K, ds — Kk ds, (4-5)
0

m b

where vy o(t) = vr(0,t) is any differentiable function vr o € C*([0,1)). Then the quantity
L(Ty) ™1 g is constant during the framed curvature flow (4.1).

Proof. With 0;y = kv + vrT), the arc-length commutator from Lemma 4.1.1 is

[at’ 65] = (57/11 - as‘UT)as

and we have ;g = (—k11 + Osvr)g. Note that the choice of v does not affect the time
derivative of length L(T'), provided the curves I'; are closed. And thus

2, (L(?t)) - L(i?t)z [(mpl + dyor)L(Ty) + L Kb ds] .

Substitution of dsvr from (4.5) yields the vanishing right-hand side. O

With a suitable choice of parametrization and the tangential velocity satisfying (4.5) we can
achieve uniform parametrization throught the flow.

Proposition 4.1.4. Assume that the initial curve Iy is uniformly parametrized such that
9(0,u) = L(To) forall w € S*. Let {(T's,0;)}1eio,1) be a solution to the framed curva-
ture flow with tangential velocity (4.5). Then the curve Iy is parametrized uniformly during
the whole flow, i.e. g(u,t) = L(Ty) forallt € [0,t) and u € S™.

Proof. Straightforward application of Lemma 4.1.3. O

Note that v7 in (4.5) is indeed well defined on the periodic domain as one can easy verify that
vr|s=0 = vr |s=L(Ft) and dsvr|s=0 = asUT|s=L(I‘t) .

4.1.2 LoCAL EXISTENCE

This section establishes local existence and uniqueness for the framed curvature flow con-
strained by assumptions outlined in Lemma 4.1.5 or Lemma 4.1.6. First, it is important to
note that the right-hand side of (4.1) is well-defined even in the absence of the Frenet frame
(see Remark 4.0.4).

The existence result is achieved by extending the method of abstract theory of analytic semi-
flows in Banach spaces from [DG79; Anggob; Anggoa; Lun84]. In particular we formu-
late (4.1) in terms of an extended four-dimensional system by treating € as another dimen-
sion, and follow the existence proof of a similar system of equations from [BKS22]. First,
let 4: [0,£) x ST — R* denote the extended parametrization 4 := [y1,72, 73, 0] . And
consider the extended system of equations

oy = A%y + F(95%,9), (4.6)
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where f € C(R**; R*) and the principal part of the right-hand side reads

. A cos —sinf T3 sinf Ty
A= [JT 0], A=cos@1+sinf[T], =| sinf T3 cos 6 —sinf Ty
gt a —sinf@ Ty, sinf T} cos 0

9

where I;; = 8,5, ([T, )ij = 25 €ije Tk fori, j € {1,2,3},and @ € RT, 3 € R are fixed
parameters of the framed curvature flow (4.1) with the following -velocity

Vo :aage+ﬁ<ﬁaN>+f4(aS§/7ﬁ/) (47)

We want the system (4.6) to be parabolic. As the spectrum of Ais

o(A) = o(A) U {a} = {a,cos b, eT},

the eigenvalues o and cos 6 must be positive. In order to proceed towards the local existence
result, additional constraints have to be laid down to ensure that this property is guaranteed.
In the following lemmas, we provide two different ways to achieve this goal.

Lemma 4.1.5. Ler § = 0and o > 0 be fixed parameters of the extended system of equations
(4.6) with fy = 0 and assume that Oy satisfies |0(0,u)| < % forallu € S*. Then any
solution {(T't, 04) }1e[0,¢) t0 (4.1) will satisfy |0 < T everywhere and the extended system (4.6)
will remain parabolic.

Proof. The statement is a consequence of the weak maximum principle for the angle func-
tional 6. Using the notation from Chapter 7.1.4 of [Eva1o], we have

00 + L6 = 0, (4.8)

where £ 1= —ad? = —ag™202 + ag30,90,. Thanks to the trivial right-hand side of
(4.8), we can use Theorem 8 from Chapter 7 of [Evaro] and conclude that

™
O(u,t)| < 0(0,7)| < —
6(u, )] < max|6(0,)] < 7

forall (u,t) € S* x [0,¢]. The last inequality holds due to the assumptions. O

Introducing additional assumptions on the curvature allows us to extend the result from
Lemma 4.1.5 for the case of non-trivial # and fy from (4.7).

Lemma 4.1.6. Assume that |0o| < 5 on S Y and there exist C1,Cy > 0 such that for all
uwe Stand allt € [0,t] we have k(u,t) < Cy and f1(u,t) < Ca, where

1 T
ti=— —+ = — 0 .
- Cﬂﬁ‘ + Oy <2 gé%}l(‘ O(U)|>

Then |0 < 5 holds everywhere on S* x [0, t] and (4.6) remains parabolic.



Proof. The non-difusive term vg — a020 of the equation (4.7) is bounded as
lvg — ad?6] < Cs,
where C'3 := C1|8| + Cs is a positive constant. Using this value we construct
§_ := min |00 (u)| — Cs, 04 = gé%’f\ao(uﬂ + (s,

which are subsolution and supersolution to 6 (see Lemma 4.1.5). Since |0+ | stays bellow 5
atall times ¢ € [0, ], we concur that |6 is bounded by 7 as well. O

To prepare for the existence proof, further notation needs to be introduced. For any ¢ €
(0,1) and any k € {0, %, 1} we define the following family of Banach spaces of Hélder con-
tinuous functions

& = h2k+6(51) % h2k+s(51) % h2k+6(51) x h2k+8(51),

where h?57¢(S1) is a little Holder space (see Section 4.1 in [BKS22]). With the aid of the
previous lemmas and the appropriate tangential velocity term described in Section 4.1.1, we
can now state the local existence result.

Proposition 4.1.7. Consider (4.1) with additional tangential velocity satisfying (4.5) from
in section 4.1.1 and assume that

(a) the initial extended parametrization y|¢—q belongs to &1,
(b) the initial parametrization o satisfies | 0y, vo| = L(L'o) on S,
(c) f isC? smooth and globally Lipschitz continuons,

(d) the assumptions of Lemma 4.1.5 or Lemma 4.1.6 are satisfied.

Then there existst > 0 and a unique family of framed curves {(T's, 0t) }1e[0,1) satisfying (4.6)
with tangential velocity (4.5) such that 4 € C([0,t); £1) N CH([0,1); &).

Proof. We extend the proof of Theorem 4.1 from [BKS22] to the parametrization with the
framing angle 4. We rewrite the extended system (4.6) as an abstract parabolic equation:

oY+ F(7) =0 (4.9)

for 4 € &1, where % is operator mapping from &1 to £y. Using Lemma 2.5 from [Anggob]
as in the proof of Proposition 4 from [BKS22], the Frechet derivative .Z' of the operator &
from (4.9) belongs to the maximum regularity class M (&7, £y). The solution ¥ exists in

C([0,2]; €1) n C'([0,]; &)

forany ¢ € (0,¢) due to Theorem 2.7 from [Anggob]. O

For more details, we refer the reader to [BKS22] or to the original literature [DG79; Anggob;
Anggoa; Lun84] of the abstract theory of analytic semi-flows in Banach spaces.
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Proposition 4.1.8. Let the assumptions of Proposition 4.1.7 hold and suppose that the maximal
time of existence t 1s finite, then

lim sup max #(u, ) = +o0 v limsup max|026(u,t)| = +oo.
t—t ueS?t t—t ueSt

Proof. For contradiction, assume that the maximal time of the existence ¢ is finite and that
both x and [026] are bounded. Since the assumptions of Proposition 4.1.7 are satisfied, the
solution 4 belongs to C([0,%]; £1) n C*([0,%]; &) forany ¢ € (0,¢). Moreover, the term
024 is bounded by the assumptions because

105417 = 1031* + 163617 = K + |30/,

Thus, by the maximum regularity, the extended solution 4 belongs to the space C([0, £]; £1) N
C'([0,]; &) and can be continued beyond [0, £), which contradicts the maximal time as-
sumption. More details can be retrieved from the last part of Theorem 4.1 from [BKS22].

O

The behaviour of I'; during the curvature blow-up event described in Proposition 4.1.8 is
detailed in the next section.

4.1.3 FORMATION OF SINGULARITIES

The expressive power of the framed curvature flow framework enables unusual singularity
types to occur during the curvature blow-up events. The study of singularities has played an
important role in the understanding of behaviour of different geometric flows and will also
prove significant in the later parts of this work.

Singularities of geometric flows have been studied in e.g. [Khars; Cori6; Lit23; Andoz;
IYo3] or [AG92], where the motion of planar curve has been extended beyond curvature
singularities via a higher dimensional flow of an associated space curve. The existence of flows
past various singularities has also been addressed by other means such as by using the concept
of viscosity solutions for the level-set formulation of curvature-driven flows in [OS88; GP],
topological surgeries [Perosb] or by analysis of self-similar shrinkers in [Vegzs].

In [Altg1], Altschuler showed that the blow-up limits of space curves under the curve short-
ening flow are planar. The situation for framed curvature flow is more complicated. The
following definition clarifies the meaning of different types of singularities which may occur
during the evolution driven by (4.1).

Definition 4.1.9 (Singularity typologies). The event at which the curvature k approaches in-
Sinity at time t and L(T'y) — 0 ast approaches t (the curve L'y shrinks to a point) during the
framed curvature flow (4.1) is called:

1. Flat singularity if and only if 0 =3 0 as t approaches t.
(0-frame uniformly approaches the Frenet frame).

2. Cone singularity if and only if 0; = © € (=%, 5)\{0} ast approaches .
3. Pinch singularity if and only if 0, = © € {+ 5} ast approachest.
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To=Ti,ie{0,1,23,4} Ny

Figure 4.3: Depiction of singularity typologies from Definition 4.1.9 for circular initial con-
dition I'g and uniform theta angle. Upper indices 1 to 4 denote the flat, cone, pinch and
infinite pinch scenario, respectively. The dashed line represents the trajectory of the vortex
filament equation for reference.

Furthermore, when the trajectory surface ¥ is unbounded, the case 3. is called infinite pinch
singularity.

The flat singularity occurs in the classical example of curve shortening flow. For the case of
simple planar curves, this singularity is guarantied by the Grayson-Gage-Hamilton theorem
[GH86; Gra87]. Embedded space curves under the curve shortening flow do not necessar-
ily shrink to a point, however the Grayson-Gage-Hamilton theorem can be extended in the
case of simple spherical curves [MB2o]. Other singularity types from Definition 4.1.9 are
illustrated in the next set of analytical examples with simple evolution of circle.

Example 4.1.10 (Cone singularity). Let I'g be a circle with radius py > 0 and consider vg =
0 withOy = ¢ € (0, 5). This setup leads to the famous solution for shrinking circle with radius

p(t) = (p2 — 2t cos )= which vanishes at the terminal timet = (2 cos ¢) ™ p. However,
due to the non-trivial binormal velocity term {0yy, B) = ksin¢ # 0, the singularity occurs
at a point shifted in the binormal direction from the center of the initial circle by a distance

1
2= (po— (p§ — 2tcos9)* ) tano — po tan o.
This leads to a conical trajectory surface with a cone singularity.

Example 4.1.11 (Pinch singularity). Adgain, consider a circle 'y with radius po > 0 and
0o = ¢ € (0, 5). Todllustrate the pinch singularity, let

00 — tan 6 — 2k4/t — t
tvV — 2(2715) )

wheret = (sin ¢) =2 po. This O-velocity is constructed in such a way that p = sin 0/t — t and
Otz = ksin@ = \/t —t. Even tough the time derivative of the shift distance z diverges ast
approaches t, its definite integral is finite:

t

. . I =t
=) =g |4 [2vi=i] =2ve

The pitch singularity thus develops at a point located ar a 2./t distance form the center of the
original circle.
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Example 4.1.12 (Infinite pinch singularity). With the same setup of initial conditions as in
the previous examples, we now consider 0,0 = 2py 2. This velocity leads to 6(t) = 2tpy 2 and

p(t) = po(1 — sin(2py ') 2. Thus the circle shrinks to a point at the timet = 17 pg and

&z = p~tsin(2pp 1)) = pg (1 — sin(2py 1))~ % sin(2p; 1)) (4.10)

Unlike in the Example 4.1.11, the integral of (4.10) diverges and thus the infinite pinch singu-
larity is formed.

All'singularity typologies from Examples 4.1.10, 4.1.11 and 4.1.12 are depicted in Figure 4.3.

Remark 4.1.13. Let us recall the definition of type-I and type-II singularity, studied in e.g.
[Khars; Cor16; Litz3]. This classification of curvature blow-up events is based on the compar-
ison of the curvature growth near t with the function (t —t) 3, Formally, a blow-up singularity
is classified as type-1 if
. . T 2 .

lim My (¢ —¢) == lim[max x"(u, ¢)] (£ ~ ¢) (4.11)
is bounded, and as type-II otherwise. In terms of this classical notation, the singularities from
Example 4.1.10 and 4.1.11 are type-I:

e [n Example 4.1.10, we have My = p=2(t) = (p — 2t cos¢) ™! = 2cosp(t — )71,
where the terminal time ist = (2 cos ¢) " p2. Thus

%in%Mt@— t) =2cos¢ < +o0.

o Similarly in Example 4.1.11, the radius reads p = (t — t)2 sin 0 and therefore

7ltirr% M;(t — t) = lim max(sin 0:(u))"2=1< +oo.

t—t ueS
Whereas the infinite pinch singularity from Example 4.1.12 is type-1I:

o Since in Example 4.1.12, the radins is p(t) = po(1 — sin(2py 1)) 3, the term M,

bebaves as (t — t)? near t and the limit (4.11) diverges.
Further analysis of these connections is left for a future work.

The study of singularity formation is an extensive field of research, and this section offers only
a brief exploration of potential blow-up scenarios within the context of the recently intro-
duced framed curvature flow. Future work can involve for instance the analysis of singularity

profiles leading to the self-shrinking Abresch-Langer curves [AL86].

4.2 GLOBAL ANALYSIS

This section studies the global aspects of the solutions to the framed curvature flow, focusing
on properties of global geometric quantities and their long term behaviour. First, several
global estimates for the length and the generated surface area are provided in section 4.2.0,
the evolution of the largest projected algebraic area is studied in section 4.2.1 and selected
useful facts related to the topology of the f-framing are provided in section 4.2..2.
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4.2.0 GLOBAL ESTIMATES

We aim to derive useful estimates for global geometric quantities such as the length and the
generated area. To this end, we first prepare evolution equations for these quantities, then
state assumptions upon which we base the bounds in the later parts of this section.

Lemma 4.2.1. The evolution of the length L(I'y) of the curve T'y and the total area A(Ly) of
the trajectory surface ¥y during (4.1) is

d

d
EL(B) =— Lt Ky ds, &A (35) = Lt kds. (4.12)

Proof. The first part of (4.12) is obtained from (4.2), the second one follows from

t
ij dA:iff ke dsdi,
dt Js,, dt Jo Jr.

where d A is obtained from & = ¢%,.%7 = 0and ¥ = v% + 7% = K% as

dA =&Y — F2du A dt = grdu A dt.

Particular details of the computations are in the proof of Lemma 4.0.7. O

Without any assumptions on the initial curve, we can bound the generated area from below
by a linear function of time.

Corollary 4.2.2. The Fenchel Theorem implies A (X,) = 2t forallt € [0,t). Furthermore,
when the curve is knotted on [0, t), we ger A (X)) = 4wt by the Milnor-Fary Theorem [Fir4g].

Lemma 4.2.3. The evolution of the total torsion T and the total generalized torsion 3 of I'y
during the framed curvature flow (4.1) is

d

d
& FtTdSZa I ¢3d3: Ftwlw3ﬁ+¢2a§l{ds' (4'13)

Proof. SinceI' is closed, both integrals are equal, i.e.

¢3ds:j Tds + &Sﬂds:f Tds.
I'y Ty Iy Ty
The right-hand side of (4.13) is obtained from (4.2) and (4.4). O

The estimates below are based a subset of the following assumptions:

s

L. There exists a fixed ¢ > 0 such that |[§| < § — . In this case we define a constant

Ky :=cos (% — 5) > 0 which will bound cos  from below.

II. The curvature & is uniformly bounded from bellow by a constant Ky, > 0, i.c.
#(u,t) = Ky forallt € [0,¢) and u € S*.
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Note that assumption /. is also needed for the existence proof in section 4.1.2 and follows
from the assumptions given in Lemma 4.1.5, or alternatively Lemma 4.1.6. Assumption /1.,
on the other hand, can only be enforced up to a time ¢ away from the singularity ¢, where the
curvature blows up.

Proposition 4.2.4. Let I'y be a solution to (4.1). If assumption 1. holds, then
L) < (L*(Ty) — 8n2Kp.t)? (4.14)
and thus the terminal time can be bounded from above as
t< (87°Ky) " L*(Ty). (4.15)

Moreover, assuming the curve is knotted on [0, t), the 872 term in both (4.14) and (4.15) esti-
mates can be replaced by 321* as in Corollary 4.2.2.

Proof. From assumption /. and the first part of Lemma 4.2.1 we have

d
—L(Iy) = —J k2 cosf ds < _KI'J k2 ds.
dt I T

Using the Fenchel Theorem and Cauchy-Schwarz inequality, we obtain

d K 2 42 Ky
SLmy) < -2k ds) < - 3
a ) L(Ty) <L“ S) L(T,)

The result follows from the ODE comparison theorem. O

Proposition 4.2.5. Let 'y be a solution to (4.1) and let ¥y denote its associated tragectory sur-
Jace. If assumptions 1. and 11. are satisfied, then we get

As) < B (s L2(T 82Kt%
(t)\m (0)_( (0)_7T I.) .

Furthermore, as t is bounded by (4.15), we get a global bound

K1 L3(Tg)
A(R,) < 22 00/
(%) 122K

Proof. Assuming /. and /1. and using Lemma 4.2.1 and Proposition 4.2.4 yields
d 1
&A(Et) < K L(Ty) < K. (L*(T) — 87 K1 t)* .

Integrating the inequality yields the result. O
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4.2.1 PROJECTED AREA

In this section, we consider the following quantity

1 1
Ay(Ty) = §L v X 0,vds = 3 JSI v X Oyydu (4.16)

and use it to extend our area estimates for ;. The geometric interpretation of this quantity
is revealed in following lemma.

Lemma 4.2.6. Fora given curve Ty, the quantity Ay, (T'y) defined in (4.16) is the largest alge-
braic area enclosed by any orthogonal projection of I'y.

Proof. For any unit normal vector v € S2, let (1) be the projection operator onto {v/}+,
ie. m(v) = I — v - vT, and let m(v)T'; denote the projected planar curve paramerized by
(V). Then

A(r(v)Ty) = JSl w(V)y X Ou(m(v)y) du

= |Ap(L) *J (v v x 0yydu *f (Ouy,v)y x vdu
St St

9

=||A,(Ty) + v x f Ouy, vy — <y, vy duydu
Sl

where A(I") denotes the algebraic area enclosed by a planar curve I'. Double application of
the triple vector product formula yields

A(r(p)Ts) = [Ap(Ts) + v x (v x Ap(T))|
=[A4p(Te) + (Ap(Te), vy v — [V Ap ()|
= [<Ap(Te), vy || = KA (T4), )l -

Thus, due to the Cauchy-Schwarz inequality, we have:
1. A(m(v)Ty) < Ap(Ty) forall vin S2,

2. A(ﬂ'(Ap(Ft)_lAp(Ft))Ft) = Ap(Ft) when Ap(Ft) > 0.

The conjunction of 1. and 2. proves the statement. O
Lemma 4.2.7. The time derivative of A,(T'y) during (4.1) is

d

() =~ L KB ds. (4.17)

Proof. The derivation of this integral quantity is simplified using the fact that

f v %X 0syds :J v X 0yydu,
T, 51
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where ds = g du and, formally, 0,, = g0s. Thus we have

d

1 1
—A,(Ty) = fJ- Oy X Ouy + 7y X 0y0pydu = fj kg x T + v x 05(kvy) ds,
dt 2 Jgi 2 Jr,

where vy x T' = — 3y and both parts of the integral yield the same value as

f v x O0s(kvp)ds = 0s(y x krg) — T x kg ds = —J kBg ds.
Ty

Ty Iy

Adding these integrals leads to (4.17). O

Proposition 4.2.8. Let {(I't, 0;) }1e(o,¢) develop a flat singularity at time't, then

> .
A(X) tg%g% ||Ap(Ft) I

Proof. Letx € R? be the point to which the curve I'y shrinks towards as the time ¢ ap-
proachest. Since ¥y U {x} spans the initial curve Iy, its area must be at least that of a minimal
spanning surface, which has locally larger area than the projection. Formally, let d A’ denote
the area element of 7()T'y, then

& = |our (@)Y < l7@) |12 10u7]? = 62,
@G = ”atﬂ—(l/)’YHQ < HIW(V)HPH(?:S’YHQ — K2

With ||| - ||| being the spectral norm, ||7(v) || = max(o(7(v))) = 1 and thus

dA" =&Y — F2du A dt < VE'Y du A dt < grdu A dt = dA.

Note that the algebraic area of the projection is even smaller as the overlapping parts can
annihilate.

Proposition 4.2.9. Let I'y be a solution to (4.1) and assume 1. and 11, then
d
E”Ap(rt)u < 2KI.KII.L(Ft)-

Proof. Applying the assumptions and Cauchy-Schwarz inequality yields

d A,(Ty) d d

A (T = ¢ ==Y — A (T < ||=A,(TY| < 2K1. K ds| .
1001 = FAR FAT0 ) < | A0 < 2m k| [ poas
The statement then follows from the fact that %y is unitary. O

Since the area of any surface enclosed by the curve I'; is smaller than || A, (T";)]|| (see proof
of Proposition 4.2.8), the above proposition provides an upper bound on the growth of the
minimal spanning surface area.

Remark 4.2.10. Note that for 0 = 7, both the length L(T';) and the projected area A,(T't)
remain constant during (4.1), as shown in [AHG6s ]. On the other hand, for 8 = 0 the motion
is an L?-gradient flow for the length functional (see [Kimo§]).
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4.2.2.  FrRaME TororLoGy

Let us consider the topology of the moving f-frame and its possible ramifications on the long-
term behaviour of the framed curvature flow. We do so by analysing the time evolution of two
geometric quantities, named writhe and twist, which are closely connected to the topology
of the moving frame. Writhe of an embedded curve is an averaged sum of all signed crossings
over the space of all orthogonal projections, but can also be written using Gauss formula as

_ i <’7(57t) —’y(sl,t),T(S,t) X T(Slvt» s Ads
Wr(”zmrﬂr (1) — (&0 ds n ds.

The second important geometric quantity describing the frame topology is the total twist of
the O-frame, which reads

1
TO () = — | (wp x dsvp, T)ds
Iy

2w
1
= ? 71/)1<I/9 x T, T> + 77/}3<l/9 X ﬂg,T> ds
T T,
1 - 1
= — d)g dS = TW(Ff) =+ —deg(ﬁt),
27 Jr, 2

where deg(6; ) is the topological degree of 6; : ST — S* and TE (T';) is the normalized total
twist (i.e. total twist assiciated with the Frenet frame):

1
TE(T,) = —J Tds.
2 I
The writhe and twist are connected via the Cilugireanu—White—Fuller Theorem [Cil61;
Whi6g] which states that

Sti(Te) = Wi (Ty) + T3 (), (4.18)

where o represents either £ or § and S?, (T';), ST} (I';) are the self-linking numbers for the
Frenet frame and the §-frame, respectively. With the help of this theorem, we can describe
the evolution of writhe for embedded curves.

Proposition 4.2.11. Let {(I't, 0¢) }iefo,¢) be a solution to (4.1). Considert € [0, 1) such that
Iy < R3 (i.e. Iy is embedded) and r:(u, t) > 0 for all w € S*. Then

d

1
CW(r) = 5 L Yrdsr + Padsr ds. (4.19)

Proof. The assumptions imply that the time derivative of Sf} (T';) exists and is equal to o.
Thus, we may differentiate (4.18) to obtain

d _d ror F _1.d J‘
dtwr (Ft) = dt [SLk(Ft) TW (Ft)] = o dt - TdS.
The formula (4.19) then follows from Lemma 4.2..3. O
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Remark 4.2.12. Note that since vg is continuous, the degree of 0 cannot change during the flow
and the difference S, (Uy) — SE\ (L) is a constant integer.

The following proposition provides a necessary topological condition needed to close the
trajectory surface in the sense of ending the flow in a flat singularity described in section 4.1.3.

Proposition 4.2.13. Assume that {('t, 0¢) }1e[o,¢) develops a flat singularity and (T, 0o) is
not a Seifert framing. Then there must exist t € [0,1) such thar either k(u,t) = 0 at some
pointu e S L or Ty is not embedded.

Proof. The Seifert framing must have zero self-linking number, see [SCR21]. O

4.3 GENERATED SURFACES

By adjusting the definition of the #-velocity, the framed curvature flow can be formulated
such thatits associated trajectory surface has various interesting properties. These specific for-
mulations are explored in this section. We first consider trajectory surfaces of constant mean
curvature in section 4.3.0 and then constant Gauss curvature in section 4.3.1. Other special
surfaces, such as surfaces of a constant ratio of principle curvatures, proposed in [Liu+22],
fall outside the scope of this manuscript and may be the subject of future work.

4.3.0 CONSTANT MEAN CURVATURE

In this section, we consider the use of framed curvature flow as a means of solving the Bjor-
ling problem for minimal surfaces and its generalisation for non-minimal surfaces of constant
mean curvature (see [BD10o]).

Proposition 4.3.1. Fora fixed constant H € R, consider the framed curvature flow (4.1) with
the O-velocity given by

vg = kH — (K0stb3 + 20.k1b3)k 291 + (K + K3 — 02K) K™ 21bo. (4.20)

The trajectory surface ¥y generated by this flow bas a constant mean curvature equal to the
prescribed value H.

Proof. Substitution of (4.20) to Lemma 4.0.7. O

The following results are all related to the Flux theorem introduced in [Kus87; Kusgr].
Proposition 4.3.2 (Flux Theorem). Lez {(I't, 0¢) }1efo,¢) be a solution tothe framed curvature
flow with O-velocity defined in (4.20). Then for any a € R3

Hf (yxT,ayds + J {vg,ayds =0, (4.21)
0%y 0%

0

where 0¥y = L' U L'y is the boundary of the associated trajectory surface y.
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Proof. Multiple proofs can be found in e.g. [Lép13], where the unit conormal vector from
Theorem s.1.1. is equivalent to the §-normal vjy. O

Combining the Flux theorem with the evolution equations for the projected area A, leads to
a simple formula for the derivative of total #-normal.

Corollary 4.3.3. For any solution {(L't, 0t) }re[0,¢) to (4.1) with vg from (4.20) we have

d
X . vopds = 2H . KBg ds.

Proof. The boundary 0%; consists of I'y and I'g, but the former is static. Differentiation of
the Flux theorem (4.21) thus leads to

d d
H(hfrt’yXTds—F(ﬂ Ftl/gdSzO. (4.22)
The result is then obtained by rearranging (4.22) and using Lemma 4.2.7. O

The Flux theorem enables the following two necessary conditions for flat singularity forma-
tion during the flow that generates CMC surfaces.

Corollary 4.3.4. When {(U't, 0t) }1e[0,1) develops a flat singularity at the terminal time t,
the surface Xy only has one non-trivial boundary 'y, and thus

A,(To) = vy ds

H To

Corollary 4.3.5. Assume that {(T'y, 04) }1e[0,¢) solves the framed curvature flow with vy from
(4.20) and develops a flat singularity. Then

L(To) = 2H||Ap(To)|.
In particular, if U is simple planar curve enclosing area A, then

L(Ty) = 2HA.

Proof. For any unit vector a € S?, we have 2H|{A,(I'y),a)| < L(I'y) from Corollary
s.1.7 of [Lopr3]. O

Importantsubclass of surfaces with constant mean curvature are the minimal surfaces [MP12;
Pér16] characterised by H = 0. In nature, minimal surfaces emerge in the context of soap
films [Gol+10; Gol+14], cell membranes [LL14], the crystallographic structure of zeolites
[AHB8s; And+88; Scr76] and as the apparent horizon of a black hole [HIo1].

For the case of minimal surfaces, many of the previous results derived from the Flux theo-
rem significantly simplify. Moreover, when the flow develops a flat singularity, the associated
trajectory surface effectively represents a valid solution to the Plateau problem with a single
boundary curve I'g.
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Corollary 4.3.6 (Corollary s.1.5 from [Lép13]). For minimal surfaces with H = 0, we have
even stricter conditions, namely for all a € R3

J {vg,ayds = 0, J {vg,v x ayds = 0.
0% 0%y

We end this section with an analysis of specific examples of solutions to (4.20) with simple
initial configurations. First example illustrates the configuration that leads to the simplest
minimal surface, which is a subset of the flat plane.

Example 4.3.7. Let the initial curve I'g be a closed convex planar curve and 8y = 0. Then
the framed curvature flow with Q-velocity from (4.20) and H = 0 is equivalent to the curve
shortening flow and generates a flat surface ¥y equivalent to the convex hull of L'y in a finite
time t when the I'y shrinks down to a round point (see [GH86; Gra&7]).

More analytical examples can be obtained by considering configurations with helical and
cylindrical symmetries.

Example 4.3.8 (Helical symmetry). For a constant 0y consider evolving belix curve

00 COS U o(t) cos(u + v(t))
Yo(u) := | gosinu |, V(u,t) := | o(t)sin(u +v(t)) |,
wu wu + w(t)

where po and w are positive constants and p, v, w are functions of time t. Since k = 09 2 and
T = wg 2, the problem (4.20) reduces to the following system

0 gsinf + pgH 0 0o

d|o 1 —gpcosl 0 _ | %o

a w - 973 p2 sin @ ) w - 0 ) (47-3)
v —wsin v 0

t=0
where g* = 0* + w Similar helicoidal surfaces of constant mean curvature were studied in
eg. [HKzo].
Considering cylindrically symmetrical configurations leads to the family of Delaneu surfaces,

first classified in [Del41].

Example 4.3.9 (Cylindrical symmetry). Setting w = O reduces the system (4.23) to

d 0 1 sinf + oH 0 By
wle| =2 | —ecos o 1. 0 = |00
9 osinf w0 0

Nodoid surface generated by the flow from Example 4.3.9 is depicted in Figure B.s.
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4.3.1 CONSTANT GAUSSIAN CURVATURE

Unlike the mean curvature flow or the minimal surface generating flow [MB22a], the framed
curvature flow can be used for generating developable surfaces or surfaces of any other pre-
scribed Gaussian curvature.

Proposition 4.3.10. Fora fixed constant K € R, consider a framed curvature flow (4.1) with
the 0-velocity given by

vg = — Kby T K — (KO3 + 205k1b3) K 24y (4.242)
— Ky pF — (05K — kY3 )R 4ha. (4.24b)

The trajectory surface ¥y generated by this flow bas a constant Gaussian curvature equal to the

prescribed value K.
Proof. Substitution of (4.24) to Lemma 4.0.7. O

Important examples of surfaces with constant Gaussian curvature are developable surfaces.
For this specific case, the Gauss-Bonnet formula significantly simplifies and can be used to
uncover an unexpected integral of motion.

Proposition 4.3.11. Let {(T's, 04) }e[0.t) be a solution to the framed curvature flow with 0-
velocity defined in (4.24) with K set to 0. Then the integral of 11 over the curve I'y at any time
t € [0,¢) is preserved.

Proof. The Gauss-Bonnet theorem states that

KdA+ J kg ds = 2mx(25s), (4.25)

3N 0%,

where dA = rkgdu A dt (see proof of Proposition 4.2.8), K is the geodesic curvature at
the boundary 6X; = I'g u I'; and x(X¢) = 0 is the Euler characteristic of an annulus.
Differentiation of (4.25) and subsequent substitution yields

d

= ds=—| kKd
3 ) s f ;

where 11 is the geodesic curvature of I'; on 3, and the integrand on the right hand side is 0
by the assumption that K = 0. O

As in the previous section, we construct analytical examples using configurations with helical
and cylindrical symmetries.

Example 4.3.12 (Helical symmetry). For a constant 0y consider evolving belix curve

00 COS U o(t) cos(u + v(t))
Yo(u) := | gosinu |, Y(u,t) = | o(t)sin(u + v(?)) |,
wu wu + w(t)
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where po and w are positive constants and p, v, w are functions of time t. Since s = 09~ and
T = wg 2, the problem (4.24) reduces to the following system

4 2 2
0 Kg ;L:i)ngos 6 0 90
dle|l_1]| —gpcost Y _ | %o (4.26)
dt |w g3 p?sinf w 01’ +
v —wsin @ U] li—o 0

where g*> = 0 + w2 This solution leads to a family of helical trajectory surfaces of constant
Gaussian curvature.

Example 4.3.13 (Cylindrical symmetry). Sezting w = 0 reduces the system (4.26) to

d 0 1 (sinf) 1K g? 0 o
wle| =2 | —ecos o |, 0 = |

t 0 .
w osinf w ], 0

The examples above can be used to generate surfaces similar to the one depicted in Figure B.s.

4.4 CONCLUSION

In conclusion, the framed curvature flow is a promising generalisation of the classical curvature-
driven geometric flows of space curves and its conﬁguration space contains exciting motion
laws with possible use cases in the analysis of surfaces with prescribed curvature.

However, more analysis is required, especially with respect to local existence for larger sub-
space of the possible settings of the 0-velocity. Other future work may entail the study of
motion laws generating other types of surfaces such as the surfaces with constant principle
curvature ratio [Liu+22] or surfaces minimising energies other than the surface area, such as
the Willmore energy or various repulsive energies.

Another possible direction of future work is to generalize the concept of framed curvature
flow to higher dimensional space with more than one codimension and look for possible con-
nections between the generated trajectory varieties and the Open book decomposition.

Further intuition and knowledge can be obtained by means of a proper numerical analysis and
experiments with different settings of the 6-velocity. Finally, the simple examples of different
types of singularities involving curvature blow-up, that were presented in Subsection 4.1.3,
ought to be extended and studied in much more detail.
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Conclusions

This thesis explores the geometry and topology of curves evolving in three-dimensional Eu-
clidean space. Geometric flows, notably in this lower-dimensional setting, are intrinsic to the
understanding of manifold natural phenomena and engineering applications. While a signif-
icant part of this research field focused on higher-dimensional or intrinsic flows, this work
aims to fill the gaps in our understanding of evolving space curves by extending the toolkit
available for their study.

The thesis consolidates and presents key findings drawn from the following research articles:

[MKB19] J. Minar¢ik, M. Kimura, and M. Bene§. “Comparing motion of curves and hy-
persurfaces in R™”. In: Discrete and Continunous Dynamical Systems Series B 2.4

(2019), pp. 4815—-4826.

[MB20] J. Minar¢ik and M. Benes. “Long-term behavior of curve shortening flow in R3”.
In: SIAM Journal on Mathematical Analysis 52 (2020), pp. 1221-1231.

[MB22a] J. Minar¢ik and M. Benes. “Minimal surface generating flow for space curves of
non vanishing torsion”. In: Discrete and Continuons Dynamical Systems - Series
B 27 (2022), pp. 6605-6617.

[MB22b] J. Minaréik and M. Benes. “Nondegenerate Homotopy and Geometric Flows”.
In: Homology, Homotopy and Applications 24 (2022), pp. 255-264.

[MB23] J. Minar¢ik and M. Bene$. “Trajectory Surfaces of Framed Curvature Flow”.
Preprint 2023.
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MAIN RESULTS

The thesis presents several new notions and contains many individual results, detailed in the
published articles listed above. All of them fall into the category of evolving space curves but
the key contributions can be grouped into the following subthemes:

* Analysis of higher codimension curve shortening flow: We presented several new
and non-trivial results related to the long-term behaviour of spherical and convex curves,
including a generalized Avoidance principle and a new Comparison theorem for evolv-
ing space curves and hypersurfaces.

* Trajectory surfaces: We introduced and studied surfaces traced out by general geo-
metric flows, which is useful for understanding the global properties of specific surface
classes or curve flows. By introducing the Minimal surface generating flow we showed
how specific surfaces can be created via simple local motion laws.

* Framed curvature flow: To overcome the limitations of the Minimal surface gener-
ating flow, we proposed a motion law for framed curves. After establishing local exis-
tence and several global estimates, we showed how this flow can be used for generating
surfaces of constant mean or Gaussian curvature.

* Tangent turning signature: When dealing with flow in higher codimension, one en-
counters several topological problems related to the ambiguity of the normal vector or
knotted configurations. The thesis introduced a new invariant, called tangent turning
signature, which helps us capture some of these complexities.

FuTtUurReE WoORK

The analytical tools introduced in this thesis lay the groundwork for numerous future re-
search directions. These opportunities for further studies are not only mathematically rich
but also bear potential for various applications in science and engineering:

* Higher-dimensional cases: The current study has been largely confined to three-
dimensional Euclidean space. However, many of the findings may be extended into
higher dimensions or more general ambient spaces as in [Smo12].

* Application-specific models: Motion laws and tools introduced in this work may find
applications in fields like robotics, computational geometry, or fluid dynamics.

* Computational methods: The development of efficient numerical methods for solv-
ing these motion laws, especially, those involving the approximation of torsion.

* Topological changes: Changes in topology are often linked to critical scientific phe-
nomena. While reconnection or annihilation through self-contact is well-studied, spon-
taneous branching during growth still lacks proper mathematical treatment.

Each of these potential studies could leverage the analytical and topological tools developed in

this thesis, contributing further to the understanding of geometric flows of low-dimensional
manifolds in various dimensions.
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Appendix: Evolution of Filament Networks

This chapter addresses the topic of moving networks of curves, proven useful in diverse ap-
plications such as grain boundary evolution and engineered curved grid structures. Taking
a step further, we introduce models of filament networks with adaptable topologies. By in-
corporating ideas from discrete differential geometry, our approach potentially expands the
scope of useful applications in this field.

We present a formal definition of filament networks and introduce a novel energy functional
based on material distribution systems. Utilizing discrete differential geometry methods, we
derive conditions for optimizing these networks. These models are not only grounded in
theory but also have practical implications, particularly in the optimization of tunnel systems
and simulations of natural branching structures. The contents of this appendix constitute a
yet unpublished work, offering a potential starting point for future research directions.

A.o INTRODUCTION

This section introduces the main ideas and notation as well as provides a brief literature review
of fields related to network optimisation problems and its practical applications.

A.c.o MOTIVATION

Moving networks of curves have been studied in both in R? [NPP20; NPP19; BWo9s; Man+18]
and R® [GMP20]. The applications of these models include modelling of grain boundary
evolution [Bal+99] and engineering curved grid structures [Bae+17; Sag+19].

We aim to advance this field by introducing models of filament networks with adaptable
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Figure A.1: Diagram depicting branching network notation (left) and explanation of the root
system energy functional (right).

topologies. These models have potential applications ranging from optimizing tunnel sys-
tems to simulating various natural structures, such as root and vascular networks or Lichten-
berg figures [NPW84]. This section describes a simplified model of branching tree structures
optimizing energy inspired by material transport systems of fractal character found both in
natural and industrial settings [Bet+o7].

A.o.1 FORMULATION

Throughout this text we define filament network as an embedding of a directed graph G =
(V, &) with acollection of points V = {v;}; from R™ asverticesand edges€ < Vx V x {T'}.
Where the curve I associated with vertex tuple (v, w) € V2 isgiven by y: [0, 1] — R" such
that v(0) = vand y(1) = w.

This example is inspired by biological systems which distribute energy or materials via branch-
ing filament networks of binary tree structure. We aim to optimize the shape of this topolog-
ical profile with respect to energy inspired by biology - defined later in this section. In this
case, the filament network G has to satisfy the following set of conditions (see Figure A.1).

1. Iy is a curve parametrized by vy : [0,1] — R" forallk € N,

2. 7:(0) = vy withl = | £] and (1) = vy forall k € N,
3. for every non-negative integer k, and [ greater than k, if L(T'y) = k and there exists a

positive integer 7 such that [Q%J = k, then the length L(T";) must be equal to 0.

We use the following nomenclature: T7p Node refers to a vertex of degree 1, Body Node refers
to a vertex of degree 2, and finally, Junction Node refers to a vertex with degree 3. Note that
vertices of degree higher than 3 are not considered.

A.o.2 ENERGY FUNCTIONAL

This section introduces an energy functional inspired by material distribution systems found
in nature and engineering. The a-length is defined for a € (0, 1] as

+o0 201

L%g):Zoﬁ' > LTy (A.1)

i=2f
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and the B-volume for 3 € (0, 1] is given by

+o0 2011

MU U @eBs)nal, (A2)

i=1 j=2°
where M is the Lebesque measure, @ denotes the dilation operator and B, is a ball with

radiusr,ie. I'; ® Bg: = {z: dist(z,[';) < 3'}. Consider the energy functional
E(G) = ¢(L*(G),V"(9)), (A.3)

where ¢: (0, L2,,.) x RT — R* for some fixed L%, ... > 0, must satisfy

max
1. ¢(z,y) > +oasz — L%, foralyinRY,

max )

2. ¢(z,-) is decreasing on R™ forall z in (0, LY
)

¢(-,y) is increasing on (0, L, ) forally in R*.

The condition (1) represents the finiteness of available resources and the remaining mono-
tonicity conditions (2) and (3) enforce the expansion profitability and the opposing structural
cost, respectively.

We use the following form of ¢ for its simplicity.

(L VP) = AL — L) = V7, (A.4)

max

where the constant A > 0 determines the profiz-cost ratio.

A.1  DISCRETIZATION

This section presents a discrete approach to the energy gradient flow of networks. We first
derive the gradient in a discrete setting, thereby bypassing the need for solving continuous
partial differential equations. Next, we explore the implications of this approach on deter-
mining optimal junction angles in networks. Finally, we introduce a branching condition
that enables the addition of new branches to the network based on energy considerations.

A.1.0 DiScrRETE ENERGY GRADIENT

Instead of defining the gradient flow analytically and then solving the corresponding partial
differential equations numerically, we derive the gradient in the discrete setting. This ap-
proach related to discrete differential geometry is often used in computation-heavy domains
such as computed graphics (see e.g. [CW17; YSC21]).

The gradient of the discrete energy functional at a point X is given by
VE = 0pa¢VL® + 0yspVVH (Ass)
= 6LQ¢ZVXL‘*+8W¢ZVXVB, (A.6)
X X
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where 0o ¢ = A(L%,,, — L*) 7% and dyys¢ = —1. The point-wise gradients V x L* and
Vx VP depend on the node type of X.

* Tip node with previous point X:
VxL* = a'Vx|X — X, |, (A7)
VxV? =28'Vx|X - X,|. (A-8)
Note that the factor 2 in (A.8) reflects that 3 is the radius, not the diameter.
* Body node with neighbouring points X, and X ,:
VxL® = a'Vx (| X, — X[+ |X = X, ), (A.9)
VxVP ~o0. (A.10)

The approximation (A.10) can be improved, however, it has a negligible effect on the
numerical simulation.

* Junction node with neighbouring points X,,, X; and X:
VxL®=a'Vx|X, - X[+ o' Vx (| X, - X[+ |X - X1]), (A1)
VxVP 28 Vx|X, — X[+ 28 Vx (IX, — X[+ |X = Xi]). (A12)

In (A.12), we assume that 37 is smaller than the discretization step.

Since the gradient Vx| X — Y| is pointing in the direction X — Y and it is a unit vector,
we can substitute Vy [ X — Y| = [ X — Y|7}(X — Y) to all of the above equations.

A.1.1 OPTIMAL JUNCTION ANGLE

The classically studied length or elastic energy minimizing gradient flow of networks leads to
Steiner trees with triple junctions satisfying the Herring condition (see e.g. [BW95; Man+18]).
In our case, the optimal angles depend on the energy hyperparameters and the current -

length of G.

Consider a discrete triple junction node X with neighbouring points X, X; and X, and let
sy = | X — X.| 71X — X,) forx € {p,l,7}. Then

VxE = Oéi+1 - 25i+1] (Sl + sr).

G | [

max max

We assume that the neighbouring discrete points are symmetrical in the sense that | X, —

Xi| = | X, — X,|. Let G°P* denoted the network for which
VxE (G =0.
The symmetry assumption and the condition for G°?* imply that s; + s, is parallel to s, and

Si+ Sp =81+ Sy, Spysp = 2{S1r, Sp)Sp,

I12



where s; . represents s; or s,.. The energy gradient condition for the optimal graph G opt ig

A

T TP 26”1)] v

max

A . .
O = maz — 2/81 + 2<Sl’f,~, Sp> (

max

The optimal junction angle can be written as 6,y = 2 arccos (—(s;,, S)), where

1 hai— 2(L8,, — L*)2B
<Sl,’r; Sp> = _5 Aai"’_l — Z(L%aw — La)QﬁH‘l . (AI})

The asymptotic optimal junction angle can be evaluated as the following limit

o o
Lo— maw _)Lrnam

. . 1
hana Oopt = 2 arccos (— - lim (s, sp>> = 2arccos <2a> .

Thus the parameter o should be at least % to obtain geometrically feasible critical networks.

A.1.2 BraNcHING CONDITION

In case of favorable energy outcome, new branches are added to the tree. This topological
change is triggered by the branching condition. The condition is derived from (A.13) by
ensuring that {s; ., $,,) € (—1,0) which leads to

o\’ 21-28 )
= z Lo — L),

Assuming that o < f3, we can express the branching condition at level ¢ as

—1
i< [log <g)] [log (i) + log <1 : ;g) +2log (LY .. — LY) ] .

This gives us alower bound for the maximum branch degree possible for a given configuration

of parameters and the current a-length.

A.2 CONCLUSION

The chapter outlines the evolution and optimization of filament networks, which are de-
scribed as moving networks of curves. It proposes an approach incorporating discrete dif-
ferential geometry and a novel energy functional inspired by biological systems. This energy
functional accounts for both the limitations in available resources and the interplay between
structural cost and expansion profitability.

By using a discrete approach to compute energy gradients, this framework enables the han-
dling of branching topological changes which can lead to interesting and useful dynamics.
The work thus serves as an unpublished foundation for future research in this field.
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Appendix: Computational Experiments

This appendix presents a collection of selected computational experiments that complement
the main text and provide validation to some of the most important theoretical results. It
touches on topics from all previous Chapters and provides additional resources.

We first describe our discretization approach and methods used for approximation of impor-
tant quantities in Section B.o. The numerical integration scheme and supporting algorithms
are provided in Section B.1. Finally, the computational results are presented in Section B.2.

B.o DiScRETE GEOMETRY

This section serves as a technical foundation, outlining the notation and approximation meth-
ods used in the simulations of this appendix. We initiate the discussion with a general overview
of the numerical approach and basic notation.

In this work, geometric flows of curves in R? are numerically treated in a way similar to
[KBS17]. We discretize spatial derivatives by means of the osculating circles and then solve the
resulting system of time-dependent ODE’s by means of the Runge-Kutta-Merson scheme.

A discrete curve I is a finite set of nodes {’yl}fvz 01 connected by linear segments, where
N € Nis the number of nodes. In order to simplify further notation for closed curves,
we set Y_1 = Yn—1 and Yn := 7o. The vector KV can be approximated by means of the
geometrical approach based on osculating circles. The approximate values of K and N at the

node ; are denoted by K ; and N, i> respectively.
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Figure B.1: Visualization of the geometric quantities defined in the osculating plane.

B.o.o DiscrRETE CURVATURE

This subsection describes the curvature approximation scheme from [MKB19] used in the
subsequent simulations. This approach uses a discrete osculating circle given by three subse-
quent points along the discretized curve.

Consider a particular node 7; € [, where 0 < i < N. We define

u:

Yi = Yi-1, Yie1 = 3(Fic1 + %),

2
V=Yl — Vi Firt = 3 (Fi + Fir1)s
as shown in Figure B.1. In order to approximate the curvature K, we find the center S of
the circle ¢ defined by the points 7;_1, ¥; and ;1. Since ¢ is the circumscribed circle of the

triangle with the vertices 7;_1, 7; and ;41 and lies in the osculating plane, the point S has
to satisfy the following conditions:

S — Vi € {uav}spana (B.I)
S — ’yz_% 1L u, (B.2)
S =y Lo, (B.3)

First condition (B.1) implies the existence of ¢1, t2 € R, such that S = 7; + t1u + tov. This
allows us to rewrite (B.2) and (B.3) as

<S - :yifévu> = t1”uH2 + 12 <u7v> - <:Yz—% - i2=u> =0,
<S—’yi+%,v> =t1 {u, vy + ta|v)|? — @H% — 4,0y = 0.

The parameters ¢1 and ¢2 can be obtained by solving the following linear system:
3l Jul? <u, U>] [h] [<:Yi—1 = Yi> U>] [—1 |u|2]
A = . =\, 7z = 2 . B.
[m] [<u,v> o ] [ta) =[Gy —300d) T 4ol |- B

When |[ul?|v]? = {(u, U>2 and the determinant det A vanishes, the points ¥;_1, 7; and
Ji+1 are collinear and we set K(; := 0. Otherwise, the system (B.4) has a unique solution

olP(lu]? + <, v)) b |l (o] + (u,v))
2det A ’ 2 2det A

1 =
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Figure B.2: Discretization scheme for torsion.

The discrete curvature K, ; is then calculated from the radius 7 of the osculation circle ¢ as
Ki=1% =7 =8| = [tru+ t20] 7.
The principal normal vector N is approximated by the expression
N; = Ki(S —#).

The geometrical setting is illustrated in Figure B.1.

B.o.1 DiScrRETE TORSION

There are various approximation techniques for curvature, ranging from classic finite differ-
ences to approaches based on discrete differential geometry [CW17]. Even though there are
some techniques to discretize torsion [Bac; Bouoo], the literature on this subject is relatively
sparse. To this end, we present a novel approximation method for discrete torsion, inspired
by the curvature approximations detailed in [CW17].

Consider a family of curves I'; derived from a given space curve I" by e-expansion in the bi-
normal direction. Each curve I, is then prescribed by the following parametric function:

Ve =y +€B.
Using the Frenet-Serret equations and the Taylor’s theorem we get
|0uyell = 19T — egmN| = V1 + 2720,y = (1 + 3%7%) 0] + O(e?),

where g := || @,7y|. Thus the length of the expanded curve I'; satisfies

d d?
— (J ds> =0 — <J d5> = J 72 ds,
df‘: r. =0 dE r. =0 r

and 72 can be expressed as the following limit

2 _ agHau'YaH
10w

7 Hau’)%H — QHau’YH + Hau’}/—fs” 1 2
= lim 3 =: lim 77.
o &0 e2[ 0wy e—0

=

116



In the following, we define discrete torsion from three consecutive points on a discrete curve
denoted by v~ 1, 4" and v**1. The idea is to discretize 72 instead of 72 and find the limit of
the discretized value as € approaches zero. The process is summarized as follows:

i e—0 i

T

U)\L

Tdiscretization

e—0

A
i
I
I
I
!
Te —— > T

To aid with the definition of 72, we introduce the following discrete variables:

, (Yi+1 —7i) % (Vi — ¥i-1) , , , . .
b= ;o di=|(+eB) = (v +eB )|,
[(vie1 — 7)) X (v — vi=1)| H( ) )”

1L — 2L+ 11,

L. i+1 i iN2 .
L= dit 4 d, () = =
0

After algebraic manipulation, the square of dé can be rewritten using d6 in the form
(d)? = (d5)? + 25y =71, B = By + 2| B = B1|?
= (dg)? +2e(v' =L H x (v =)+ E2H x (v =4
= (dp)* [1 + (esina’ | H'|)?],
where a; is the angle between H “ and ’yi — ~%7%, and the term H? is given by
N+l i R

H = - . - . + - - - .
(=) x (v == (=) x (v =)

Using the Taylor theorem, we can estimate dé and lé for € close to 0 as

di = dj/1+ (esino?|H[)2 = dj [L + 3> (sina’|H'|)?] + O(e*),
I =1 + 5¢* [dg (sin a1 H™)? + di(sin o [ H'[)?] + O(eY).
Finally, we define the approximation of (7%)? at the point 7 as

i\2 . N2 déﬂ(SinO‘HlHHHl)z + dj(sino’|H')?
(%)% = lim(72)* = T - .
e—0 g™ + dj

Note that this approximation does not provide us with the sign of the torsion, but it is not
required for the minimal surface generating flow due to Proposition 2.1.2.

B.r NUMERICAL INTEGRATION

In this section, we focus on numerical integration method for solving time-dependent ODEs
in our geometrical setting. We describe the semi-discrete scheme as a foundational step, fol-
lowed by an application of the Runge-Kutta-Merson scheme for time integration. The sec-
tion also addresses the order of convergence and the challenges posed by topological changes.
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B.1.o SEMI-DISCRETE SCHEME

For numerical integration of the initial value problem

d’?i 2 .

e i (Si —7i), (B.s)
- _ 211 B6
File=0 = Y0 N ) (B.6)

we use the 4th order accurate Runge-Kutta-Merson method with an automatic time step
adjustment as in [Chryo].

Denoting 5 = (3o, - .-, yn—1)" and F;(§) = K; N, system (B.s-B.6) reduces to
Fi(t) = Fi(3(t))-

We denote the time step 7 > 0 and the time level t. The next time level is given by the formula

F(E+7) = () + § (k1 + 4ky + k5),

where k; = (kjo,..., k:j7N,1)T can be computed using the following set of formulas
ki = Fi(3()),
kai = Fy(3(t) + Zk1),
ksi = Fy((t) + 5 (k1 + k2)),
kai = F;(7(t) + % (k1 + 3k3)),
ks = Fi(3(t) + T (k1 — 3ks + 4k4)).

The time step 7 is updated at each iteration as in the page 246 of [Hol+86].

1
0\ *® 11
Tpew = | — ] w7, wheree = max — ||=ky; —
5 0<i<N 3 |5 7

1

9 L
10

ks ;
10 5

4
k3 + 5k4,i -

The control parameters w and § must satisfy 0 < w < 1and § > 0.

B.1.1 ORDER OF CONVERGENCE

We assume that I'g is embedded in a unit sphere centered at the origins. The deviation of the
discretized curve from the shrinking sphere radius is characterized by

)

E(N) i= max max ||5:(D)] = V122

a.
t 0<i<

Ep(N) := max

t

1 "G+ L), - . 1
(L(f) 2 \w(t)—ﬂ\) |

wherep € N, L(7) := SV 1i(8) and [;(8) = |5 (8) — 5a1 (D).
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The Experimental Order of Convergence (EOC) used in [RM89; Dzig4] is calculated as
_ log(€p(N2)) — log(£,(N1))
log Ny — log Ny
where p € Norp = 00. The following numerical simulations were performed by using

the semi-discrete scheme (B.5-B.6) with the control parameters § = 107 andw = 0.8 as
suggested in [Hol+86], page 246.

EOC, (Ny, Na) :=

B.2 CoMrUTATIONAL EXPERIMENTS

In the final section of this appendix, we present a series of computational experiments to sup-
port and validate our theoretical results. These experiments span topics from all chapters of
this thesis, from spherical verification and minimal surfaces to more complex configurations
like filament networks and coupled dynamics. Each experiment aims to empirically substan-
tiate the analytical and numerical methods discussed earlier.

B.2.o SPHERICAL VERIFICATION

The first couple of examples are related to the curve shortening flow of space curves, studied
in Chapter 1. Let us restate Definition 1.0.1 for reader’s convenience:

Definition B.2.1 (Curve shortening flow). Let {I't}1e[o,¢) witht > 0 be a family of evolving
curves. The curve shortening flow is defined as the following initial-value problem.:

0y = kN on S* x [0,1),
.ol
Ylt=0 = %0 inS,
where vy € C2(SY; R3) is the parametrization of the initial curve Ty,
We include two computational examples serving both as verification of the numerical scheme
from Section B.1 and testing of the properties of moving spherical curves. According to

Corollary 1.1.5, spherical curves under the curvature flow should remain embedded in a
shrinking sphere. Both examples follow the curve shortening flow redefined above.

Example B.2.2. The initial curve Iy for the first example is given by the parametrization

cos(6u) sinu
v (%E,0) = | sin(6u)sin |ul |, ue [—m, 7.
—cosu

The results of the numerical simulation are presented in Table B.1 and Figure B.3.

Example B.2.3. The initial curve L'y for the second example is given by the parametrization

CcCosu

1
_ : sinw ; ue [0,27].
\/1 + (5 cos(10u)) 5 cos(10u)

The results of the numerical simulation are presented in Table B.z and Figure B.4.

7 (3%,0)

119



Table B.1: Results of the numerical computation from Example B.2.2. The error measure-
ments were taken during time interval [0, 0.45].

N Ex(N) EOC, & (N) EOC; & (N) EOC,

100 1.0205-10~2 0 9.3770-1073 6.4629-1073
200 2.5018-1073 **°3 2.2581.1073 >934° 1.5292-1073 2'0792
g0 653291074 P72 5ga49.10-4 190 3gg76.10-4 1975

$oo  1.6623-10~* 1'97‘6*6 1.4426.10—4 >0*34 9.7702-105 1'992‘*
1600 5.0943.1075 17°%* 3.5888.10~5 97! 9.4118.10-5 2°°3
@i=0 ()f=0.15 (©f=035 (d)i=045

Figure B.3: Results of the numerical simulation from Example B.2.2. The discretized curve
is visualized at four different time levels along with the corresponding sphere.

B.2.1 MINIMAL SURFACES

We move to the Minimal surface generating flow introduced in Chapter 2. Let us restate
Definition 2.0.6 of the motion law for easier reference:

Definition B.2.4 (Minimal surface generating flow). Let I'g be a closed space curve with pos-
itive curvature and torsion. We say that a family of curves {T's }1e[0,1) 5 evolving according to
the minimal surface genevating flow if its parametrization vy satisfies the initial value problem.:
Oy =7":N in S' x (0,t), (B.7)

Ylt=0 =70 in St (B.8)

where g is parametrization of the initial curve g and T is the torsion of the curve.

We accompany Example 2.2.1 which was given analyticaly by a result obtained by means of the
numerical approximation. The evolution for local quantities g, & and 7, given in Equations
(2.5-2.8), have been numerically solved by the explicit Euler first-order method using the finite
difference approximations along the parametric interval.

The results presented in Figure B.10 show the evolution of initial curve with parametrization

Y0(u) = [cosu(ry + 72 cos(mu)), sinu(ry + 75 cos(mu)), ro sinu]” (B.9)
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Table B.2: Results of the numerical computation from Example B.2.3. The error measure-
ments were taken during time interval [0, 0.45].

N Ex(N) EOC,  &(N) EOC, E(N) EOC,

400 1.1538-107" ‘ 1.1538-107! P 1.0340-10~*

800 2.9575.1072 7 32 2.9574.102 '? go 2.9146.10-2 >**3?

1200 12098:1072 *7 1.2996-102  ***"°  9.4608.107% 7

1600 7.2659-1073 'OZ; 7.9636.10-3 >° : 5.9386.10-3 2°547

2000 4.6211.1073 *O*°1 4.6209.10-3 >°2%9 3.3186.10—3 20459
(b)# = 0.01 (c)i = 0.05 )i =02

Figure B.4: Results of the numerical simulation from Example B.2.3. The discretized curve
is visualized at four different time levels along with the corresponding sphere.

forallu € S. This specific experiment used parameters m = 10,r; = landry = 11—0
The initial condition for the values of g, £ and 7 was analytically derived from (B.9). The
experiment was run with time step At = 1075 and the curve was discretized with 103 points.

The validity of the numerical results was partially verified by several sanity checks and the nu-
merical scheme was partially validated using the known solution described in Example 2.2.1.
During the experiment, the integral /7 deviated from its initial value by less than 2 - 1014
which is in accordance to Corollary 2.2.2. The length was monotonically decreasing (see
Proposition 2.2.3) while the torsion 7 was increasing at every fixed u € S (see Proposition
2.1.2). Even though, the assumptions for Proposition 2.3.3 were not satisfied by the initial
configuration, the averaged curvature Kqye eventually became lower than the minimum of
torsion Ty The curvature vanished in finite time as shown in Proposition 2..3.3.

B.2.2 TANGENT TURNING SIGNATURE

This section presents multiple examples to demonstrate the computation of the tangent turn-
ing signature, as introduced in Chapter 3. To facilitate easier referencing, we restate Defini-
tion 3.1.1 where this invariant was first introduced.

Definition B.2.s (Tangent turning signature). Let I' € R2(R3) be a locally convex space
curve and choose a fixed p € S*\Ran T. By Ty, we denote the projected curve given by

Yp = P, 0T,
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where T is the tangent vector function of the original curve I and the second map
3, : $%\(p} — R?
is the stereographic projection from p. We define the tangent turning parity Tr € Zg as
Tr = deg(T},) mod 2,

where deg(T),) is the degree of the Gauss map for the curve Iy, also referred ro as the turning
number of I'y, or as the winding number of the tangent vector function T}, : S L, 8t

The following example shows the construction of the projected curve I'? and the correspond-
ing value of the tangent turning signature 7Tt for several specific curves from M.

Example B.2.6. Consider the following set of parametric functions of locally convex curves:

BEE cos(2u) 1 [ cos(2u) (5 + cos(3u))
m(u) == sin(2u) |, v2(u) = = | sin(2u)(5 + cos(3u)) | ,
2 . 6 -
2sinu | sin(3u)
cos(4u) cosu 1 [ cos u(5 + cos(10u))
v3(u) = | sin(4u) cosu | , va(u) = 8 sinwu(5 + cos(10u)) |,
sinu | sin(10u)

foru € 281, The curves defined by these functions are shown in Figure B.6 along with their
tangent indicatrices and their stereographical projections from the point p = (0,0,1)T.

Since the turning numbers read d(T')) = d(T%) = 2, d(T'5) = 5 and d(TY)) = 11, the

tangent turning signature is equal to the equivalence class [0] for the first two curvesT'y and T,
and to the equivalence class [1] for the remaining curves '3 and T'4.

B.2.3 CoNSTANT MEAN CURVATURE SURFACES

Finally, we show how the Framed curvature flow presented in Chapter 4 can be used to gen-
erate surfaces of constant mean curvature. To improve readability, we restate Example 4.3.9
which uses the specific §-velocity that leads to constant mean curvature surfaces. In this case,
we assume cylindrically symmetrical configurations that lead to Delaneu surfaces [Del41].

Example B.2.7 (Cylindrical symmetry). Setting w = 0 reduces the system (4.23) to

d 0 1 sinf + oH 0 6o
el KA —ocost |, 0 = |
w osinf wll_o 0

Figure B.s depicts the results of the numerical simulation for the initial configuration that
leads to the nodoid surface. All other Delaneu surfaces can be obtained by adjusting the initial
angle 0 and the prescribed mean curvature . The simulation used discrete torsion from
Section B.o.1, and the created surface was ported to Blender for realistic rendering.
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Figure B.5: Rendering of nodoid trajectory surface with constant mean curvature from Ex-
ample 4.3.9. The black circle is the initial condition I'g. The rendering was made in Blender.

B.2.4 EvoLvING NETWORKS

This subsection contains selected numerical simulations related to the motion of curve net-
works. The first couple of experiments illustrate the motion by curve shortening flow with
triple junction points and fixed boundary points. The final example depicts the branching
network described in Appendix A.

Figures B.7 and B.8 show the evolution due to the curve shortening flow of networks with
fixed endpoints. The first example is in R? (Figure B.7) and the second example (Figure B.8)
shows evolving networks of space curves. The final shapes converge to Steiner trees.

Figure B.9 shows a branching tree evolving according to the discrete gradient flow described in
Subsection A.1.0. All simulations were performed using the Runge-Kutta-Merson method
described in Section B.1. The branching topological changes occur spontaneously via the
mechanism described in Subsection A.1.2.

B.3 ConcLUsIONS

This appendix supplements the main text with additional computational experiments and
methodological discussions. It has offered validation for selected theoretical results and pro-
vided further insights for various curve flows covered in the preceding chapters.
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(a) Viviani curve I';. (b) Tantrix of 'y (c) Projection 'Y
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(d) Trefoil curve I's. (e) Tantrix of I'a. (f) Projection I'%.
(g) Curve I's. (h) Tantrix of I's. (i) Projection I'%.
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(j) Curve I'y. (k) Tantrix of T'4. (1) Projection I'Y.
Figure B.6: Locally convex curves from Example B.2.6. Figures adapted from [MB22b].
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(a) Stepo(t = 0). (b) Step 250 (t = 25). (c) Step soo (t = 50).
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(d) Step 1000 (t = 100). (e) Step 2000 (¢ = 200). (f) Step soo0 (t = 500).

Figure B.7: Curve network with triple junction and fixed endpoints evolving according to
the curve shortening flow. Parameters: At = 0.0,6 = 10~*andw = 0.8.
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0 ——— 0 ———<¢ 01 \(
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R T
(a) Step o (¢ = 0.00). (b) Step s (t = 0.05). (c) Step 20 (¢ = 0.20).
2 2 2
14 1 1
01 \{ 04 0
~1 —11 -1
T T
(d) Step 55 (t = 0.55). (e) Step 65 (t = 0.65). (f) Step 8o (¢ = 0.80).

Figure B.8: Evolution of network with parametersa« = 0.6, 3 = 0.5,C' = 2, Ly}, ... = 10.
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(a) Step o (t = 0.0). (b) Step 10 (t = 0.1).

(c) Step 30 (t = 0.2). (d) Step so (t = 0.4).

() Step 150 (t = 0.5). (£) Step 900 (t = 1.0).

(g) Step 150 (t = 2.0). (h) Step 900 (t = 9.0).

Figure B.9: Example of space curve network with fixed endpoints evolving according to the
curve shortening flow. The simulation ran with timestep At = 0.01 and the Runge-Kutta-
Merson controlling parameters § = 1074, w = 0.8.
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(a) Initial curve I'g (up to rotation). (b) Final curve I'¢ (up to rotation).
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Figure B.10: Numerical solution to (2.5-2.8) with the initial condition given by (B.9). The
curvature & vanishes at ¢ = 0.20628. The curves I'g and I'; were reconstructed from &, 7
and g. The position and orientation was partially recovered using the Principal component
analysis [Jolo2]. However, the rotation around the z-axis was not preserved.

127



arc-length commutator, 19

conjecture
geometrization conjecture, 11
Poincaré conjecture, 10
Willmore conjecture, 11
curvature
extrinsic curvature, 13
Gauss curvature, 49
mean curvature, 49
Ollivier-Ricci curvature, 10
principle curvatures, 73, 86
Ricci curvature, 12
Riemannian curvature tensor, 12
scalar curvature, 12

Dirac delta, 8

energy
Canham-Helfrich energy, 7

Mébius energy, 17

O’Hara energies, 17

Tangent point energy, 17

Willmore energy, 7

Yamabe functional, 12
equation

Biot-Savart equation, 8, 16

Gross-Pitaevskii equation, 17

nonlinear Schrédinger equation, 16

vortex filament equation, 71
Euler characteristic, 51

Finsler metric, 18
first fundamental form, 52
flow
L?-gradient flow, 84
binormal flow, 16
Calabi flow, 12
curve shortening flow, 71
elastic flow, 16

Index

extrinsic flow, 13
framed curvature flow, 17
Frenet frame dependent flow, 61
gradient flow, 16
inextensible flow, 72
intrinsic flow, 12.
invariant submanifold flow, 19
inverse mean curvature flow, 13
Lagrangian mean curvature flow, 18
mean curvature flow, 11, 13
minimal surface generating flow, 16
repulsive flow, 17
Ricci flow, 10, 12
Willmore flow, 7, 14
Yamabe flow, 12

formula
entropy formula, 22
Frenet-Serret formulae, 15, 42, 70
Gauss formula, 85

frame
Bishop frame, 70
Frenet frame, 15, 75
moving frame, 70
Seifert frame, 86
theta frame, 70, 74

function
Heaviside function, 8
signed distance function, 30
space-filling function, 66

Gronwall lemma, 59

homology group, 52
homotopy
nondegenerate homotopy, 6o, 66
regular homotopy, 11, 60, 65
Huisken’s monotonicity, 22

inequality

Bonneson inequality, 26

128



Cauchy-Schwarz inequality, 25, 37, 38, type-I singularity, 8o

82-84
Hamilton’s Harnack inequality, 28
isoperimetric inequality, 26
Penrose inequality, 10
Young inequality, 45
isoperimetric ratio, 22, 26

Lebesque measure, 111
level set method, 15, 78
Lipschitz continuous, 31

manifold
Fuclidean manifold, 62
Kihler manifold, 12
Riemannian manifold, 13
Stiefel manifold, 56
symplectic manifold, 18
map
Gauss map, 64, 122
Weingarten map, 29
Minkowski functional, 36

number
Betti number, 52
self-linking number, 86
turning number, 64, 122
winding number, 64, 122

phase field, 15
principle
avoidance principle, 21, 43
comparison principle, 28, 30
generalised comparison principle, 21
Huisken’s comparison principle, 23
maximum principle, 26, 56
minimal principle, 27
weak maximum principle, 76
problem
Bjérling problem, 86
Hele-Shaw problem, 8

second fundamental form, 49
singularity
cone singularity, 78
flat singularity, 78, 84
infinite flat singularity, 79
pinch singularity, 78

type-1I singularity, 80
soliton, 25
solution
Abresch-Langer shrinkers, 25, 80
Ancient sine curve, 2.4
Grim reaper, 24
helix curve, 53
Paperclip solution, 2.4
self-similar shrinkers, 78
subsolution, 77
supersolution, 59, 77
sphere eversion, 11
star-shaped curve, 37
Steiner tree, 18
stereographical projection, 122
surface
Clifford torus, 11
constant mean curvature surface, 86
Delaneu surfaces, 88
developable surface, 50, 89
Hashimoto surface, 72
helicoid, 53
minimal surface, 11, 87
trajectory surface, 49, 73, 86

tangent turning signature, 64

theorem
Cilugireanu—White—Fuller theorem, 17,

8s

Fenchel theorem, 25, 26, 57, 81, 82
Flux theorem, 86, 87
Gauss-Bonnet theorem, 51, 52, 89
Grayson-Gage-Hamilton theorem, 79
Green’s theorem, 26
Milnor-Féry theorem, 26, 57, 81
ODE comparison theorem, 82
Rademacher theorem, 32
Schur comparison theorem, 43
Taylor’s theorem, 116
Whitney-Graustein theorem, 64

total curvature, 52

total torsion, 17, 81

twist, 85

writhe, 17, 85
Wulft shape, 18

129



Publication List

PuBLICATIONS IN IMPACT FACTOR JOURNALS

* J. Minar¢ik, M. Benes: Minimal surface generating flow for space curves of non van-
ishing torsion. Homology, Discrete and Continuous Dynamical Systems - Series B,
27: 6605-6617, 2022,
doi: 10.3934/dcdsb.2022011.

* J. Minar¢ik and M. Benes$: Nondegenerate Homotopy and Geometric Flows. Homol-
ogy, Homotopy and Applications, 24: 255264, 2022,
doi: 10.4310/HHA.2022.v24.n2.212.

* J. Minar¢tk, M. Bene$: Long-term behavior of curve shortening flow in R3. SIAM
Journal on Mathematical Analysis, s2(2):1221-1231, 2020,
doi: 10.1137/19M1248522.

* J. Minar¢ik, M. Kimura, M. Bene$: Comparing motion of curves and hypersurfaces in
R™. Discrete & Continuous Dynamical Systems - B, 24(9):4815-4826, 2019,
doi: 10.3934/dcdsb.2019032.

PREPRINTS

* J. Minar¢ik, M. Benes: Trajectory Surfaces of Framed Curvature Flow, 2023.

CONFERENCE CONTRIBUTIONS

* International workshop
BIGW: Geometric flows and related topics, Inverness, Scotland, July, 2023.

— Lecture : Ricci ﬂow invariant curvature conditions

* International workshop
Tangled in Knot Theory, ICERM, The Institute for Computational and Experimental
Research in Mathematics, Brown University, Providence, United States, May, 2023.

— Oral presentation : Minimal Surface Generating Flow

130



International workshop
Workshop on scientific computing 2023, Dééin, May, 2023.

— Oral presentation : Trajectory Surfaces of Framed Curvature Flow

International seminar
Discussion meeting on zero mean curvature surfaces in the Lorentz-Minkowski space
and related areas, online, Shiv Nadar University NCR Delhi, October, 2022.

— Oral presentation : Minimal Surface Generating Flow

International seminar
Interfaces: Modeling, Analysis, Numerics, Oberwolfach Research Institute for Math-
ematics, Oberwolfach, Germany, November 202.2.

— Oral presentation : Framed Curvature Flow

International conference

Topological Methods in Mathematical Physics, EMFCSC: International School of Math-
ematics, Ettore Majorana Foundation and Centre for Scientific Culture, Erice, Italy,
September 2022.

— Oral presentation : Minimal Surface Generating Flow

International workshop
Workshop on scientific computing 2022, Dé¢in, December, 202.2.

— Oral presentation : Discrete Torsion

International conference
Calculus of Variations in Probability and Geometry, UCLA, Institute for Pure & Ap-
plied Mathematics, Los Angeles, United States, February, 2022.

— Doster presentation : Minimal Surface Generating Flow

International seminar
Combinatorial and Geometric Knot Theory, Oberwolfach Research Institute for Math-
ematics, Oberwolfach, Germany, November 2021.

— Oral presentation : Locally Convex Knots

International workshop
Young Geometers Meeting, University of Copenhagen, Online, April, 2021.

— Oral presentation : Minimal surface generating flow for space curves of nonvan-
ishing torsion

International workshop
Winterschool on Analysis and Applied Mathematics, University of Miinster, Online,
February, 2021.

— DPoster : Minimal surface generating flow for space curves of non-vanishing torsion

131



International conference
Czech-Japanese Seminar in Applied Mathematics, Online, January, 2021.

— Oral presentation : Minimal surface generating flow for space curves of nonvan-
ishing torsion
International workshop
Workshop on scientific computing 2020, Online, December, 2020.
— Oral presentation : Minimal surface generating flow for space curves of nonvan-
ishing torsion
International conference
BJUT Conference - Knotted Fields and Applications, Beijing, China, September, 2019.
— Oral presentation : Minimal surface generating flow for space curves of nonvan-
ishing torsion
— DPoster : Properties of codimension-two curve shortening flow
International workshop

Biology, Analysis, Geometry, Energies, Links: A Program on Low-dimensional Topol-
ogy, Geometry, and Applications, Minneapolis, United States, June, 2019.

— DPoster : Properties of codimension-two curve shortening flow

Seminar
Necas Seminar on Continuum Mechanics, MFF UK, Prague, Czech Republic, Febru-
ary, 2019.

— Oral presentation : Properties of codimension-two curve shortening flow

International conference
Czech-Japanese Seminar in Applied Mathematics 2018 (CJS2018), Noto, Japan, July,
2018.

— Oral presentation : Curvature driven flow of space curves in normal and binormal
direction

International conference
Czech-Japanese Seminar in Applied Mathematics 2018 (CJS2018), Noto, Japan, July,
2018.

— Oral presentation : Curvature driven flow of space curves in normal and binormal
direction

International workshop
Workshop on scientific computing 2018, Dé¢in, Czech Republic, June, 2018.

— Oral presentation : Curvature driven flow of space curves in normal and binormal
direction

132



International workshop
7th conference of the Visual Computing Competence Center, Havli¢kav Brod, Czech
Republic, November, 2017.

— Oral presentation : Automatic identification of trains from images

International conference
Future Port Prague 2017, Prague, Czech Republic, September, 2017.

— Oral presentation : A1 in machine vision

International conference
International Symposium on Computational Science 2017, Kanazawa, Japan, July,
2017.

— Oral presentation : Curvature driven flow of space curves in normal and binormal
direction

International workshop
14th Workshop on Mathematical Analysis for Nonlinear Phenomena, Kanazawa, Japan,

July, 2017.

— Oral presentation : Curvature driven flow of space curves in normal and binormal
direction

International workshop
Workshop on scientific computing 2018, Déin, Czech Republic, June, 2017.

— Oral presentation : Curvature driven flow of space curves in normal and binormal
direction

International workshop
Workshop on scientific computing 2017, Dé¢in, Czech Republic, June, 2017.

— Oral presentation : Curvature driven flow of space curves in normal and binormal
direction

International workshop
Workshop on scientific computing 2016, Déin, Czech Republic, June, 2016.

— Oral presentation : Applications of planar and space curve evolution

International workshop
Workshop on scientific computing 2015, Déin, Czech Republic, June, 2015.

— Oral presentation : Numerical solution of a curvature driven flow of plane and
space curves and its applz'mtz’om

133



	Statement of Work
	Introduction
	Overview
	Motivation
	Applications in Science
	Applications in Engineering
	Applications in Mathematics

	Geometric Flows
	Intrinsic Flows
	Extrinsic Flows

	Curve Flows
	Representation Approaches
	Parametric Method
	Examples

	Technical Preliminaries
	Local Quantities
	Global Quantities


	High-Codimension Curve Shortening Flow
	Known Properties
	Examples of Solutions
	Evolution of Geometric Quantities
	Curvature estimates

	Generalized Comparison Principle
	Moving Hypersurfaces
	Signed Distance Function
	Comparison Theorem
	Ramifications

	Convexity Conditions
	Convex Space Curves
	Star-shaped Curves
	Orthogonal Projection
	Convex Projection

	Spherical Curves
	Spherical Invariance
	Heat Equation Lemma
	Generalised Schur Comparison
	Spherical Avoidance Principle
	Mutually Spherical Curves

	Conclusions

	Minimal Surface Generating Flow
	Introduction
	Trajectory Surface
	Surface Geometry
	Motion Law

	Technical Preliminaries
	Evolution Equations
	Gauss-Bonnet Theorem
	Total Curvature

	Basic Properties
	Analytical Solution
	Integral of Motion
	Maximum Principle

	Long Term Behaviour
	Length Limit
	Area Estimate
	Averaged Curvature
	Terminal Time

	Conclusion

	Nondegenerate Homotopy
	Problem Formulation
	Vanishing Curvature
	Frenet Frame Dependent Flows

	Tangent Turning Signature
	Topological Preliminaries
	Well-definedness

	Ramifications
	Invariance
	Geometric Flows

	Conclusion

	Framed Curvature Flow
	Introduction
	Theta-Frame
	Framed Flow
	Trajectory Surfaces

	Local Analysis
	Evolution Equations
	Tangential Redistribution
	Local Existence
	Formation of Singularities

	Global Analysis
	Global Estimates
	Projected Area
	Frame Topology

	Generated Surfaces
	Constant Mean Curvature
	Constant Gaussian Curvature

	Conclusion

	Conclusions
	Bibliography
	Image Sources
	Appendix: Evolution of Filament Networks
	Introduction
	Motivation
	Formulation
	Energy Functional

	Discretization
	Discrete Energy Gradient
	Optimal Junction Angle
	Branching Condition

	Conclusion

	Appendix: Computational Experiments
	Discrete Geometry
	Discrete Curvature
	Discrete Torsion

	Numerical Integration
	Semi-discrete Scheme
	Order of Convergence

	Computational Experiments
	Spherical Verification
	Minimal Surfaces
	Tangent Turning Signature
	Constant Mean Curvature Surfaces
	Evolving Networks

	Conclusions

	Index
	List of Publications

