
Minkowski Penalties: Robust Differentiable Constraint Enforcement for Vector Graphics SIGGRAPH Conference Papers ’24, July 27-August 1, 2024, Denver, CO, USA

Figure 17: Quantities used to evaluate a differentiable expres-
sion for the SDF of a simple, convex or nonconvex polygon.

A FORMULAS FOR PENETRATION DEPTH
This appendix catalogues expressions for the penetration depth of
common shape pairs, building on 2D SDF expressions provided by
Quilez [2021]. When available, closed-form expressions are gener-
ally preferable to polygonal approximation—providing more accu-
rate evaluation at lower computational cost. Throughout we assume
operations like max and abs are applied to vectors componentwise.

A.1 Circle-Circle
Consider two circles𝐴, 𝐵 with centers c𝐴, c𝐵 ∈ R2 and radii 𝑟𝐴, 𝑟𝐵 ∈
R>0. Their difference𝐶 = 𝐴−𝐵 is a circle with center c𝐶 = c𝐴 − c𝐵
and radius 𝑟𝐶 = 𝑟𝐴 + 𝑟𝐵 . The penetration depth is then

𝜙𝐶 (0) = |c𝐶 | − 𝑟𝐶 .

A.2 Rectangle-Rectangle
Consider two rectangles 𝐴, 𝐵 with centers c𝐴, c𝐵 ∈ R2, widths
𝑤𝐴,𝑤𝐵 ∈ R>0, and heightsℎ𝐴, ℎ𝐵 ∈ R>0. Their difference𝐶 = 𝐴−𝐵
is a rectangle with center c𝐶 = c𝐴 − c𝐵 , width𝑤𝐶 = 𝑤𝐴 +𝑤𝐵 , and
height ℎ𝐶 = ℎ𝐴 + ℎ𝐵 . The penetration depth is then

𝜙𝐶 (0) = |max(d, (0, 0)) | +min(max(d𝑥 , d𝑦), 0),
where d = abs(c𝐴) − (𝑤𝐶 , ℎ𝐶).

A.3 Shape-Circle
Suppose 𝐵 is any shape with known SDF 𝜙𝐵 . For circle 𝐴 with
center c𝐴 and radius 𝑟𝐴 , the SDF of the difference𝐶 = 𝐵 −𝐴 is then
just

𝜙𝐶 (0) = 𝜙−𝐵 (−c𝐴) − 𝑟𝐴 .
Intuitively, a Minkowski sum with a circular disk “thickens” shape
𝐵, which can be achieved by simply offsetting the SDF of 𝐵.

A.4 Polygon-Polygon
The Minkowski difference of two polygons 𝐴, 𝐵 can be computed
using the methods discussed in Section 3.3. The SDF 𝜙𝐶 (p) of the
resulting polygon 𝐶 could then be evaluated by multiplying un-
signed distance by a sign indicating whether p is inside or outside
𝐶 [Quilez 2020]. However, this approach leads to unstable gradient
evaluation: on the polygon boundary, the gradient of the SDF is
well-defined—but the intermediate unsigned distance is not dif-
ferentiable. Since penetration depth 𝜙𝐶 (0) is a central quantity in
our algorithm, we use a different, carefully-designed formula. This
formula need only work for simple polygons, since the polygon in
question is always the boundary of a solid region 𝐶 ⊂ R2.

Algorithm 1 PolygonSDF(p, q0, . . . , q𝑛)

Input: A point p ∈ R2 and a polygon q0, . . . , q𝑛 ∈ R2 with q𝑛 = q0.
Output: The signed distance to the given polygon, evaluated at p.
1: 𝑑 ←∞ ⊲unsigned distance (squared)
2: 𝑒 ← ⊤ ⊲⊤ if edge, ⊥ if vertex
3: 𝑗 ← 0 ⊲edge index, only used if 𝑒 = ⊤
4: 𝑠 ← 1 ⊲sign, only used if 𝑒 = ⊥
5: v0 ← q0 − q𝑛−1 ⊲vector for previous edge
6: for 𝑖 = 0, . . . , 𝑛 − 1 do ⊲iterate over edges
7: u← p − q𝑖
8: v← q𝑖+1 − q𝑖
9: 𝑧 ← ⟨v, v⟩ ⊲squared length of edge
10: if 0 ≤ ⟨u, v⟩ < 𝑧 then ⊲closest point to line lies on edge
11: 𝑑′ ← |u v|2/𝑧
12: if 𝑑′ < 𝑑 then
13: (𝑑, 𝑒, 𝑗) ← (𝑑′,⊤, 𝑖)
14: else ⊲vertex may be closer than edge
15: 𝑑′ ← ⟨u, u⟩
16: if 𝑑′ < 𝑑 then
17: (𝑑, 𝑒, 𝑠) ← (𝑑′,⊥, 1)
18: if |v0 v| < 0 then ⊲concave vertex
19: 𝑠 ← −1
20: v0 ← v
21: if 𝑒 = ⊤ then
22: u← p − q𝑗
23: v← q𝑗+1 − q𝑗
24: return |u v|/|v| ⊲signed distance for edge
25: else return 𝑠

√
𝑑 ⊲signed distance for vertex

In particular, suppose we are given a list of vertex coordinates
q0, . . . , q𝑛 = q0 in counterclockwise order, describing a simple but
possibly nonconvex polygon (Figure 17). We will use |a b| to denote
the determinant of a 2 × 2 matrix with columns a and b. For any
point p ∈ R2, there are two possibilities: the closest point to p is
either a vertex q𝑖 , or it lies on an edge with endpoints q𝑖 , q𝑖+1. Let

u := p − q𝑖 and v := q𝑖+1 − q𝑖 .

The distance to any vertex q𝑖 is then

𝑑q𝑖 (p) := |u|.

The closest point can be on the edge only if

0 < ⟨u, v⟩ < ⟨v, v⟩. (3)

If this condition holds, the signed distance to the edge is the (signed)
height of triangle (𝑞𝑖 , 𝑝, 𝑞𝑖+1), which can be obtained by dividing
its area (given by a cross product) by its base length:

𝑑±q𝑖q𝑖+1 (p) = |u v|/|v|.

The procedure, then, is to compute 𝑑q𝑖 for all vertices, and 𝑑±q𝑖q𝑖+1
for all edges that satisfy Equation 3. If the smallest value from this
set is on an edge, then we just return this value. Otherwise, the
closest point is some vertex q𝑖 ; the distance to this vertex is positive
if it is convex, and negative if it is concave. More precisely, q𝑖 is
convex if and only if |v0 v| > 0, where v0 := q𝑖 − q𝑖−1. Algorithm 1
gives an optimized version of this procedure.

SIGGRAPH Conference Papers ’24, July 27-August 1, 2024, Denver, CO, USA Minarčík, Estep, Ni, and Crane

B HALFPLANE TRICK
When 𝐴 and 𝐵 are both convex polygons, their difference 𝐶 is
also convex—and can hence be expressed as an intersection of half
planes. In particular, for each edge 𝑒 of 𝜕𝐴, the signed distance to
the corresponding half plane 𝐻𝑒 is given by

𝜙𝐻𝐴
𝑒
(x) = ⟨x, n𝑒 ⟩ − max

v∈𝑉−𝐵
⟨p𝑒 + v, n𝑒 ⟩ ,

where n𝑒 is the outward unit normal vector of 𝑒 , p𝑒 is any point
of 𝑒 , and 𝑉−𝐵 is the vertex set of −𝐵. The SDF 𝜙𝐻 −𝐵𝑒

(x) is defined
analogously (maximizing over v ∈ 𝑉𝐴). The SDF for 𝐶 can then be
approximated as

𝜙𝐶 (x) = max
[
max
𝑒∈𝐴

𝜙𝐻𝐴
𝑒
(x), max

𝑒∈−𝐵
𝜙𝐻 −𝐵𝑒

(x)
]
.

Note that 𝜙𝐶 (x) = 𝜙𝐶 (x) for points 𝑥 inside 𝐶 , but they slightly
differ outside, where 𝜙 satisfies the eikonal property |∇𝜙 | = 1,
but is not an SDF. Such an approximation is sometimes called a
pseudo-SDF [Marschner et al. 2023] or simply a unit gradient field
(UGF) [Courter 2023]. For two convex polygons of size𝑚 and 𝑛, this
halfplane trick has time complexity 𝑂 (𝑚𝑛), whereas the explicit
sum of convex polygons takes 𝑂 (𝑚 + 𝑛) time.

C ADDITIONAL ENERGY FORMULAS
For reproducibility our examples, we provide formulas for the spe-
cific energies used in the generated examples.

C.1 Elastic Curves
The optimization of elastic curve 𝛾 in Figure 1 (A) and Figure 6, left
is primarily achieved by minimizing the elastic energy

𝐸 =

∫ 𝐿

0
𝜅2 (𝑠)ds,

where 𝜅 is the curvature and 𝐿 denotes the length of 𝛾 .
The curves are represented by polygonal lines
(parametrized by the vertex positions) and the
elastic energy integral is approximated by a finite
sum 𝐸 ≈ 1

2
∑
𝑖 𝜅

2
𝑖
(𝑙𝑖 + 𝑙𝑖+1), where 𝑙𝑖 = ∥𝛾𝑖 −𝛾𝑖−1∥

is the length of 𝑖-th line segment and 𝜅𝑖 is the
discrete curvature at the vertex 𝛾𝑖 . To compute
the discrete curvature we use the Steiner formula with line segment
corner expansion 𝜅𝑖 = 2 sin (𝜃𝑖/2) from [Crane and Wardetzky
2017], where 𝜃𝑖 represents the angle at the vertex 𝛾𝑖 (see inset).

The specific energy used in the figures was E𝑒 = (𝐸 − 𝐸0)2,
where 𝐸0 is a prescribed constant set to 0 in Figure 6 and 1200
in Figure 15. To improve the optimization stability, the curve was
also subjected to a penalty P𝑒𝑙 =

∑
𝑖 (𝑙𝑖 − 𝑙)2 enforcing uniform

distribution of points, where 𝑙 is the mean edge length. Finaly, an
objective E𝑙 = (

∑
𝑖 𝑙𝑖 − 𝐿0)2 encourages curves meet a prescribed

total length 𝐿0, set to 1000 and 1500 for Figure 6 and Figure 15,
respectively. In total, the energies associated with each curve read

E = E𝑒 + E𝑙 and P = P𝑚 + P𝑒𝑙 ,
where P𝑚 is sum of all Minkowski penalties present in the exam-
ples. These examples also include no-overlap penalties between all
curves and disks, and containment penalties within the fixed outer
region (detailed in Section 3).

C.2 Spectral Graph Energy
Spectral graph layout is a widely used method for graph visual-
ization [Koren 2003]. For a graph G = (𝑉 , 𝐸) with vertices 𝑉 =

{1, . . . , 𝑛} and edges 𝐸 ⊂ 𝑉 × 𝑉 , the spectral method finds the
optimal embedding v = {v1, . . . , v𝑛} by solving

min
v
E :=

∑
(𝑖, 𝑗) ∈𝐸 ∥v𝑖 − v𝑗 ∥2,

s.t. var(v) := ∑
𝑖∈𝑉 ∥v𝑖 − v∥2 = 1,

where v is the mean of v. Since both the objective and constraint
are differentiable, we can directly implement it within our frame-
work and simultaniously avoid overlap or enforce containment
using Minkowski penalties. We use the same energy E but slightly
reorganize the penalty to arrive at a graph centered at the origin:

P =
(∑

𝑖∈𝑉 ∥v𝑖 ∥2 − 𝑆𝑛
)2 + ∥∑𝑖∈𝑉 v𝑖 ∥2 ,

where 𝑆 , set to 3600 in Figure 6, dictates the scale of the graph.

C.3 t-SNE Energy
Another common energy-based visualization method is t-SNE in-
troduced in [van der Maaten and Hinton 2008]. Here, the goal is
to find a meaningful low-dimensional embedding y1, . . . , y𝑛 ∈ R2

of dataset with high-dimensional vectors x1, . . . , x𝑛 ∈ R𝑑 . The
optimized energy is equal to Kullback-Leibler divergence

E =

𝑛∑︁
𝑖, 𝑗=1

𝑝 (x𝑗 , x𝑖 , 𝜎) log
(
𝑝 (x𝑗 , x𝑖 , 𝜎)
𝑝 (y𝑗 , y𝑖 , 1)

)
of conditional probabilities computed as

𝑝 (x𝑖 , x𝑗 , 𝜎) =
exp(−∥x𝑖 − x𝑗 ∥2/(2𝜎2))∑
𝑘≠𝑖 exp(−∥x𝑖 − x𝑘 ∥2/(2𝜎2))

.

The streamlined implementation, used in Figure 6, sets 𝜎2 to a fixed
value 2 · 10−4 instead of adjusting it based on the perplexity as
suggested in [van der Maaten and Hinton 2008]. While minimizing
the objective E we also simultaneously prevent overlap of the
embedded text bounding boxes using Minkowski disjoint penalty
P𝑑 for all text pairs and even with additional circular element.

C.4 Point Repulsion
The example in Figure 12 Minkowski disjoint penalty P𝑑 for line
segments representing molecular bonds and simultaneously mini-
mized the repulsive E𝑟 and prescribed distance E𝑑 energies:

E𝑟 =
∑︁
𝑖≠𝑗

1
∥x𝑖 − x𝑗 ∥2 + 𝜀

, E𝑑 =
∑︁
(𝑖, 𝑗) ∈𝐵

(∥x𝑖 − x𝑗 ∥ − 𝑑)2,

where x𝑖 ∈ R2 denote the positions of atomic centers, 𝐵 is the set of
molecular bonds and the constants are set to 𝜀 = 10−5 and 𝑑 = 60.

C.5 Globally Injective Flattening
The example in Figure 11 minimizes a surface distortion energy E𝐷
subject to non-overlap constraints between all pairs of triangles that
share neither edges nor vertices, enforced via Minkowski penalties
P𝑑 . We also constrain the area of the flattenedmesh to be no smaller
than a target area A0, to prevent it from collapsing to a point. A
further penalty P𝑐 keeps triangles inside the outer rectangle, and

Minkowski Penalties: Robust Differentiable Constraint Enforcement for Vector Graphics SIGGRAPH Conference Papers ’24, July 27-August 1, 2024, Denver, CO, USA

Swelling of
the cell and organelles

Membrane
blebbing

Cell shrinkage

Membrane
breakdown

Amorph densities
in mitochondria

Cell content
release

Chromatin
condensation

Figure 18: Original vector art “remixed” in Figure 9. Organelle
shapes were extracted from the image at left, and rearranged
within cell membrane shapes extracted from the image at
right. (Illustrations by Volodymyr Ishchuk and Olha Pohreb-
niak, used with permission.)

Fig. location time (s)
1 (S) 4.08
1 (I) 17.54
1 (G) 32.15
1 (R) 60.57
1 (A) 73.25
1 (P) 29.35
1 (H) 74.24
9 2nd from right 23.42
11 bottom right 31.73
11 top right 22.69
7 upper middle right 0.04
15 73.25
7 top right 0.31
7 lower middle left 0.01
7 bottom right 0.06
7 upper middle left 1.57
7 top left 0.05
7 middle center 0.01
7 lower middle right 0.17
7 bottom center right 0.10
7 bottom center left 0.00
7 middle left 0.04

Fig. location time (s)
6 center 1.88
6 right 4.95
6 left 4.26
8 left 21.53
8 center left 16.02
8 center right 182.95
8 right 261.49
14 left 0.93
14 center 0.58
14 right 3.40
10 left 2.61
10 right 0.38
13 0.26
12 0.25

Table 2: Per-figure time to optimize diagrams shown through-
out the paper. Timings were measured on a 2021 M1 Max
Macbook Pro. As noted in Section 5.3, longer times corre-
spond to naïve evaluation of all 𝑂 (𝑛2) pairs of penalties in
dense packing scenarios.

in some instances, a penalty P𝑑 prevents intersection with a fixed
circular disk.

More specifically, the distortion energy is given by the discrete
Dirichlet energy of the mapping from the input 3D mesh into the
2D plane [Crane et al. 2013, Section 7.4]. Letting p𝑖 ∈ R2 denote
the 2D coordinates of vertex 𝑖 , this energy can be expressed as a
sum over all triangles 𝑖 𝑗𝑘 in the mesh𝑀 :

E𝐷 (p) =
∑︁

𝑖 𝑗𝑘∈𝑀
𝑤𝑘
𝑖 𝑗 (p𝑖 − p𝑗)

2 +𝑤𝑖
𝑗𝑘
(p𝑗 − p𝑘)2 +𝑤

𝑗

𝑘𝑖
(p𝑘 − p𝑖)2 .

Here 𝑤 are the cotan weights, given for each edge 𝑖 𝑗 of triangle
𝑖 𝑗𝑘 by 𝑤𝑘

𝑖 𝑗
= 1

2 cot𝜃
𝑗𝑘
𝑖
, where 𝜃 𝑗𝑘

𝑖
is the interior angle at corner 𝑖

on the input 3D mesh. (Note that these weights are constant with
respect to p.) The area of the flattened mesh can be expressed via
the shoelace formula [Crane et al. 2013, Exercise 7.9], obtained as a
sum over edges 𝑖 𝑗 in the mesh boundary 𝜕𝑀 :

A(p) = 1
2

∑︁
𝑖 𝑗∈𝜕𝑀

p𝑖 × p𝑗 .

To enforce the condition A ≥ A0, we add a penalty Parea =

max(0,A0 − A)2 to the objective of Equation 2.

